还剩7页未读,
继续阅读
2020版高考新创新一轮复习数学(理)通用版讲义:第九章第二节 第1课时 系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系
展开
第二节 圆与方程
[考纲要求]
1.掌握确定圆的几何要素.
2.掌握圆的标准方程与一般方程.
3.能根据给定直线、圆的方程判断直线与圆的位置关系.
4.能根据给定两个圆的方程判断两圆的位置关系.
5.能用直线和圆的方程解决一些简单的问题.
6.初步了解用代数方法处理几何问题的思想.
第1课时 系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系
圆的方程
1.圆的定义及方程
定义
平面内到定点的距离等于定长的点的轨迹叫做圆
标准方程
(x-a)2+(y-b)2=r2(r>0)
圆心:(a,b)
半径:r
一般方程
x2+y2+Dx+Ey+F=0(D2+E2-4F>0)
圆心:
半径:r=
2.点与圆的位置关系
点M(x0,y0),圆的标准方程(x-a)2+(y-b)2=r2.
理论依据
点到圆心的距离与半径的大小关系
三种情况
(x0-a)2+(y0-b)2=r2⇔点在圆上
(x0-a)2+(y0-b)2>r2⇔点在圆外
(x0-a)2+(y0-b)2<r2⇔点在圆内
[提醒] 不要把形如x2+y2+Dx+Ey+F=0的结构都认为是圆,一定要先判断D2+E2-4F的符号,只有大于0时才表示圆.
[谨记常用结论]
1.圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为____________.
答案:(x-2)2+y2=10
2.经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的方程为________________.
答案:(x-1)2+(y-1)2=1
3.圆心为(1,1)且过原点的圆的方程是________.
答案:(x-1)2+(y-1)2=2
4.已知圆的方程为x2+y2+ax+2y+a2=0,一定点为A(1,2),要使过定点A的圆的切线有两条,则a的取值范围是________.
答案:
5.若坐标原点在圆(x-m)2+(y+m)2=4的内部,则实数m的取值范围是________.
答案:(-,)
6.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________.
答案:x2+y2-2x=0
直线与圆的位置关系
1.直线与圆的位置关系(半径r,圆心到直线的距离为d)
相离
相切
相交
图形
量化
方程观点
Δ<0
Δ=0
Δ>0
几何观点
d>r
d=r
d<r
2.圆的切线
(1)过圆上一点的圆的切线
①过圆x2+y2=r2上一点M(x0,y0)的切线方程是x0x+y0y=r2.
②过圆(x-a)2+(y-b)2=r2上一点M(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2.
(2)过圆外一点的圆的切线
过圆外一点M(x0,y0)的圆的切线求法:可用点斜式设出方程,利用圆心到直线的距离等于半径求出斜率k,从而得切线方程;若求出的k值只有一个,则说明另一条直线的斜率不存在,其方程为x=x0.
(3)切线长
①从圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)外一点M(x0,y0)引圆的两条切线,切线长为 .
②两切点弦长:利用等面积法,切线长a与半径r的积的2倍等于点M与圆心的距离d与两切点弦长b的积,即b=.
[提醒] 过一点求圆的切线方程时,要先判断点与圆的位置关系,以便确定切线的条数.
3.圆的弦问题
直线和圆相交,求被圆截得的弦长通常有两种方法:
(1)几何法:因为半弦长、弦心距d、半径r构成直角三角形,所以由勾股定理得L =2.
(2)代数法:若直线y=kx+b与圆有两交点A(x1,y1),B(x2,y2),则有:
|AB|=|x1-x2|= |y1-y2|.
[谨记常用结论]
过直线Ax+By+C=0和圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0.,
1.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( )
A.[-3,-1] B.[-1,3]
C.[-3,1] D.(-∞,-3]∪[1,+∞)
答案:C
2.直线y=ax+1与圆x2+y2-2x-3=0的位置关系是( )
A.相切 B.相交
C.相离 D.随a的变化而变化
解析:选B ∵直线y=ax+1恒过定点(0,1),又点(0,1)在圆(x-1)2+y2=4的内部,故直线与圆相交.
3.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是________.
解析:由题意知点M在圆外,则a2+b2>1,圆心到直线的距离d=<1,故直线与圆相交.
答案:相交
4.过点(2,3)且与圆(x-1)2+y2=1相切的直线的方程为________________.
解析:当切线的斜率存在时,设圆的切线方程为y=k(x-2)+3,由圆心(1,0)到切线的距离为1,得k=,所以切线方程为4x-3y+1=0;当切线的斜率不存在时,易知直线x=2是圆的切线,所以所求的直线方程为4x-3y+1=0或x=2.
答案:x=2或4x-3y+1=0
5.以M(1,0)为圆心,且与直线x-y+3=0相切的圆的方程是________.
答案:(x-1)2+y2=8
6.直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.
解析:由x2+y2+2y-3=0,得x2+(y+1)2=4.
∴圆心C(0,-1),半径r=2.圆心C(0,-1)到直线x-y+1=0的距离d==,
∴|AB|=2=2=2.
答案:2
圆与圆的位置关系
圆与圆的位置关系(两圆半径为r1,r2,d=|O1O2|)
相离
外切
相交
内切
内含
图形
量的关系
d>r1+r2
d=r1+r2
|r1-r2|<d<r1+r2
d=|r1-r2|
d<|r1-r2|
[提醒] 涉及两圆相切时,没特别说明,务必要分内切和外切两种情况进行讨论.
[谨记常用结论]
圆C1:x2+y2+D1x+E1y+F1=0与C2:x2+y2+D2x+E2y+F2=0相交时:
(1)将两圆方程直接作差,得到两圆公共弦所在直线方程;
(2)两圆圆心的连线垂直平分公共弦;
(3)x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0表示过两圆交点的圆系方程(不包括C2).
1.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为________.
答案:2
2.若圆x2+y2=1与圆(x+4)2+(y-a)2=25相切,则实数a=________.
答案:±2或0
3.圆x2+y2=r2与圆(x-3)2+(y+1)2=r2外切,则半径r=________.
解析:由题意,得2r=,所以r=.
答案:
4.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是________.
答案:[1,121]
5.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( )
A.21 B.19
C.9 D.-11
解析:选C 圆C1的圆心为C1(0,0),半径r1=1,因为圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=(m<25).从而|C1C2|==5.由两圆外切得|C1C2|=r1+r2,即1+=5,解得m=9,故选C.
6.与圆C1:x2+y2-6x+4y+12=0,C2:x2+y2-14x-2y+14=0都相切的直线有( )
A.1条 B.2条
C.3条 D.4条
解析:选A 两圆分别化为标准形式为C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则两圆圆心距|C1C2|==5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.
[课时跟踪检测]
1.(2019·广西陆川中学期末)圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-1=0的位置关系是( )
A.内含 B.外离
C.外切 D.相交
解析:选D 圆C1的标准方程为(x+1)2+(y+4)2=25,圆C2的标准方程为(x-2)2+(y-2)2=9,两圆的圆心距为=3,两圆的半径为r1=5,r2=3,满足r1+r2=8>3>2=r1-r2,故两圆相交.故选D.
2.(2019·闽侯第八中学期末)若圆Ω过点(0,-1),(0,5),且被直线x-y=0截得的弦长为2,则圆Ω的方程为( )
A.x2+(y-2)2=9或(x+4)2+(y-2)2=25
B.x2+(y-2)2=9或(x-1)2+(y-2)2=10
C.(x+4)2+(y-2)2=25或(x+4)2+(y-2)2=17
D.(x+4)2+(y-2)2=25或(x-4)2+(y-1)2=16
解析:选A 由于圆过点(0,-1),(0,5),故圆心在直线y=2上,设圆心坐标为(a,2),由弦长公式得=,解得a=0或a=-4.故圆心为(0,2),半径为3或圆心为(-4,2),半径为5,故选A.
3.(2019·北京海淀期末)已知直线x-y+m=0与圆O:x2+y2=1相交于A,B两点,且△OAB为正三角形,则实数m的值为( )
A. B.
C.或- D.或-
解析:选D 由题意得圆O:x2+y2=1的圆心坐标为(0,0),半径r=1.
因为△OAB为正三角形,则圆心O到直线x-y+m=0的距离为r=,即d==,解得m=或m=-,故选D.
4.(2019·南宁、梧州联考)直线y=kx+3被圆(x-2)2+(y-3)2=4截得的弦长为2,则直线的倾斜角为( )
A.或 B.-或
C.-或 D.
解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d==1.即d==1,所以k=±,由k=tan α,得α=或.故选A.
5.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是( )
A.(x-2)2+2=1
B.(x-2)2+(y+1)2=1
C.(x+2)2+(y-1)2=1
D.2+(y-1)2=1
解析:选A 由于圆心在第一象限且与x轴相切,故设圆心为(a,1)(a>0),又由圆与直线4x-3y=0相切可得=1,解得a=2,故圆的标准方程为(x-2)2+(y-1)2=1.
6.(2019·西安联考)直线y-1=k(x-3)被圆(x-2)2+(y-2)2=4所截得的最短弦长等于( )
A. B.2
C.2 D.
解析:选C 圆(x-2)2+(y-2)2=4的圆心C(2,2),半径为2,直线y-1=k(x-3), ∴此直线恒过定点P(3,1),当圆被直线截得的弦最短时,圆心C(2,2)与定点P(3,1)的连线垂直于弦,弦心距为=,所截得的最短弦长为2=2,故选C.
7.(2019·山西晋中模拟)半径为2的圆C的圆心在第四象限,且与直线x=0和x+y=2均相切,则该圆的标准方程为( )
A.(x-1)2+(y+2)2=4
B.(x-2)2+(y+2)2=2
C.(x-2)2+(y+2)2=4
D.(x-2)2+(y+2)2=4
解析:选C 设圆心坐标为(2,-a)(a>0),则圆心到直线x+y=2的距离d==2,∴a=2,∴该圆的标准方程为(x-2)2+(y+2)2=4,故选C.
8.(2018·唐山二模)圆E经过A(0,1),B(2,0),C(0,-1)三点,且圆心在x轴的正半轴上,则圆E的标准方程为( )
A.2+y2= B.2+y2=
C.2+y2= D.2+y2=
解析:选C 根据题意,设圆E的圆心坐标为(a,0)(a>0),半径为r,
则有解得a=,r2=,则圆E的标准方程为2+y2=.故选C.
9.(2018·合肥二模)已知圆C:(x-6)2+(y-8)2=4,O为坐标原点,则以OC为直径的圆的方程为( )
A.(x-3)2+(y+4)2=100 B.(x+3)2+(y-4)2=100
C.(x-3)2+(y-4)2=25 D.(x+3)2+(y-4)2=25
解析:选C 因为圆C的圆心的坐标C(6,8),
所以OC的中点坐标为E(3,4),
所求圆的半径|OE|==5,
故以OC为直径的圆的方程为(x-3)2+(y-4)2=25.故选C.
10.(2018·荆州二模)圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,则k的值是( )
A.2 B.-2
C.1 D.-1
解析:选B ∵圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,∴直线y=kx+3过圆心(1,1),即1=k+3,解得k=-2.故选B.
11.(2019·厦门质检)圆C与x轴相切于T(1,0),与y轴正半轴交于两点A,B,且|AB|=2,则圆C的标准方程为( )
A.(x-1)2+(y-)2=2 B.(x-1)2+(y-2)2=2
C.(x+1)2+(y+)2=4 D.(x-1)2+(y-)2=4
解析:选A 由题意得,圆C的半径为=,圆心坐标为(1,),∴圆C的标准方程为(x-1)2+(y-)2=2,故选A.
12.(2019·孝义一模)已知P为直线x+y-2=0上的点,过点P作圆O:x2+y2=1的切线,切点为M,N,若∠MPN=90°,则这样的点P有( )
A.0个 B.1个
C.2个 D.无数个
解析:选B 连接OM,ON,则OM=ON,∠MPN=∠ONP=∠OMP=90°,
∴四边形OMPN为正方形,
∵圆O的半径为1,∴|OP|=,
∵原点(圆心)O到直线x+y-2=0的距离为,
∴符合条件的点P只有一个,故选B.
13.(2019·北京东城联考)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A 直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,∴圆心到直线的距离d=,则|AB|=2=2=2,当k=1时,|AB|=2 =,即充分性成立;若|AB|=,则2=,即k2=1,解得k=1或k=-1,即必要性不成立,故“k=1”是“|AB|=”的充分不必要条件,故选A.
14.已知圆C:(x+1)2+(y-1)2=1与x轴切于A点,与y轴切于B点,设劣弧的中点为M,则过点M的圆C的切线方程是________________.
解析:因为圆C与两轴相切,且M是劣弧的中点,所以直线CM是第二、四象限的角平分线,所以斜率为-1,所以过M的切线的斜率为1.因为圆心到原点的距离为,所以|OM|=-1,所以M,所以切线方程为y-1+=x-+1,整理得x-y+2-=0.
答案:x-y+2-=0
15.(2018·枣庄二模)已知圆M与直线x-y=0及x-y+4=0都相切,且圆心在直线y=-x+2上,则圆M的标准方程为________________.
解析:∵圆M的圆心在y=-x+2上,
∴设圆心为(a,2-a),
∵圆M与直线x-y=0及x-y+4=0都相切,
∴圆心到直线x-y=0的距离等于圆心到直线x-y+4=0的距离,
即=,解得a=0,
∴圆心坐标为(0,2),圆M的半径为=,
∴圆M的标准方程为x2+(y-2)2=2.
答案:x2+(y-2)2=2
16.(2019·天津联考)以点(0,b)为圆心的圆与直线y=2x+1相切于点(1,3),则该圆的方程为____________________.
解析:由题意设圆的方程为x2+(y-b)2=r2(r>0).
根据条件得解得∴该圆的方程为x2+2=.
答案:x2+2=
17.(2019·丹东联考)经过三点A(1,3),B(4,2),C(1,-7)的圆的半径是________.
解析:易知圆心在线段AC的垂直平分线y=-2上,所以设圆心坐标为(a,-2),由(a-1)2+(-2-3)2=(a-4)2+(-2-2)2,得a=1,即圆心坐标为(1,-2),∴半径为r==5.
答案:5
18.(2019·镇江联考)已知圆C与圆x2+y2+10x+10y=0相切于原点,且过点A(0,-6),则圆C的标准方程为____________________.
解析:设圆C的标准方程为(x-a)2+(y-b)2=r2,其圆心为C(a,b),半径为r(r>0).
∵x2+y2+10x+10y=0可化简为(x+5)2+(y+5)2=50,
∴其圆心为(-5,-5),半径为5.
∵两圆相切于原点O,且圆C过点(0,-6),点(0,-6)在圆(x+5)2+(y+5)2=50内,
∴两圆内切,∴
解得a=-3,b=-3,r=3,
∴圆C的标准方程为(x+3)2+(y+3)2=18.
答案:(x+3)2+(y+3)2=18
[考纲要求]
1.掌握确定圆的几何要素.
2.掌握圆的标准方程与一般方程.
3.能根据给定直线、圆的方程判断直线与圆的位置关系.
4.能根据给定两个圆的方程判断两圆的位置关系.
5.能用直线和圆的方程解决一些简单的问题.
6.初步了解用代数方法处理几何问题的思想.
第1课时 系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系
圆的方程
1.圆的定义及方程
定义
平面内到定点的距离等于定长的点的轨迹叫做圆
标准方程
(x-a)2+(y-b)2=r2(r>0)
圆心:(a,b)
半径:r
一般方程
x2+y2+Dx+Ey+F=0(D2+E2-4F>0)
圆心:
半径:r=
2.点与圆的位置关系
点M(x0,y0),圆的标准方程(x-a)2+(y-b)2=r2.
理论依据
点到圆心的距离与半径的大小关系
三种情况
(x0-a)2+(y0-b)2=r2⇔点在圆上
(x0-a)2+(y0-b)2>r2⇔点在圆外
(x0-a)2+(y0-b)2<r2⇔点在圆内
[提醒] 不要把形如x2+y2+Dx+Ey+F=0的结构都认为是圆,一定要先判断D2+E2-4F的符号,只有大于0时才表示圆.
[谨记常用结论]
1.圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为____________.
答案:(x-2)2+y2=10
2.经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的方程为________________.
答案:(x-1)2+(y-1)2=1
3.圆心为(1,1)且过原点的圆的方程是________.
答案:(x-1)2+(y-1)2=2
4.已知圆的方程为x2+y2+ax+2y+a2=0,一定点为A(1,2),要使过定点A的圆的切线有两条,则a的取值范围是________.
答案:
5.若坐标原点在圆(x-m)2+(y+m)2=4的内部,则实数m的取值范围是________.
答案:(-,)
6.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________.
答案:x2+y2-2x=0
直线与圆的位置关系
1.直线与圆的位置关系(半径r,圆心到直线的距离为d)
相离
相切
相交
图形
量化
方程观点
Δ<0
Δ=0
Δ>0
几何观点
d>r
d=r
d<r
2.圆的切线
(1)过圆上一点的圆的切线
①过圆x2+y2=r2上一点M(x0,y0)的切线方程是x0x+y0y=r2.
②过圆(x-a)2+(y-b)2=r2上一点M(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2.
(2)过圆外一点的圆的切线
过圆外一点M(x0,y0)的圆的切线求法:可用点斜式设出方程,利用圆心到直线的距离等于半径求出斜率k,从而得切线方程;若求出的k值只有一个,则说明另一条直线的斜率不存在,其方程为x=x0.
(3)切线长
①从圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)外一点M(x0,y0)引圆的两条切线,切线长为 .
②两切点弦长:利用等面积法,切线长a与半径r的积的2倍等于点M与圆心的距离d与两切点弦长b的积,即b=.
[提醒] 过一点求圆的切线方程时,要先判断点与圆的位置关系,以便确定切线的条数.
3.圆的弦问题
直线和圆相交,求被圆截得的弦长通常有两种方法:
(1)几何法:因为半弦长、弦心距d、半径r构成直角三角形,所以由勾股定理得L =2.
(2)代数法:若直线y=kx+b与圆有两交点A(x1,y1),B(x2,y2),则有:
|AB|=|x1-x2|= |y1-y2|.
[谨记常用结论]
过直线Ax+By+C=0和圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0.,
1.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( )
A.[-3,-1] B.[-1,3]
C.[-3,1] D.(-∞,-3]∪[1,+∞)
答案:C
2.直线y=ax+1与圆x2+y2-2x-3=0的位置关系是( )
A.相切 B.相交
C.相离 D.随a的变化而变化
解析:选B ∵直线y=ax+1恒过定点(0,1),又点(0,1)在圆(x-1)2+y2=4的内部,故直线与圆相交.
3.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是________.
解析:由题意知点M在圆外,则a2+b2>1,圆心到直线的距离d=<1,故直线与圆相交.
答案:相交
4.过点(2,3)且与圆(x-1)2+y2=1相切的直线的方程为________________.
解析:当切线的斜率存在时,设圆的切线方程为y=k(x-2)+3,由圆心(1,0)到切线的距离为1,得k=,所以切线方程为4x-3y+1=0;当切线的斜率不存在时,易知直线x=2是圆的切线,所以所求的直线方程为4x-3y+1=0或x=2.
答案:x=2或4x-3y+1=0
5.以M(1,0)为圆心,且与直线x-y+3=0相切的圆的方程是________.
答案:(x-1)2+y2=8
6.直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.
解析:由x2+y2+2y-3=0,得x2+(y+1)2=4.
∴圆心C(0,-1),半径r=2.圆心C(0,-1)到直线x-y+1=0的距离d==,
∴|AB|=2=2=2.
答案:2
圆与圆的位置关系
圆与圆的位置关系(两圆半径为r1,r2,d=|O1O2|)
相离
外切
相交
内切
内含
图形
量的关系
d>r1+r2
d=r1+r2
|r1-r2|<d<r1+r2
d=|r1-r2|
d<|r1-r2|
[提醒] 涉及两圆相切时,没特别说明,务必要分内切和外切两种情况进行讨论.
[谨记常用结论]
圆C1:x2+y2+D1x+E1y+F1=0与C2:x2+y2+D2x+E2y+F2=0相交时:
(1)将两圆方程直接作差,得到两圆公共弦所在直线方程;
(2)两圆圆心的连线垂直平分公共弦;
(3)x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0表示过两圆交点的圆系方程(不包括C2).
1.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为________.
答案:2
2.若圆x2+y2=1与圆(x+4)2+(y-a)2=25相切,则实数a=________.
答案:±2或0
3.圆x2+y2=r2与圆(x-3)2+(y+1)2=r2外切,则半径r=________.
解析:由题意,得2r=,所以r=.
答案:
4.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是________.
答案:[1,121]
5.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( )
A.21 B.19
C.9 D.-11
解析:选C 圆C1的圆心为C1(0,0),半径r1=1,因为圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=(m<25).从而|C1C2|==5.由两圆外切得|C1C2|=r1+r2,即1+=5,解得m=9,故选C.
6.与圆C1:x2+y2-6x+4y+12=0,C2:x2+y2-14x-2y+14=0都相切的直线有( )
A.1条 B.2条
C.3条 D.4条
解析:选A 两圆分别化为标准形式为C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则两圆圆心距|C1C2|==5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.
[课时跟踪检测]
1.(2019·广西陆川中学期末)圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-1=0的位置关系是( )
A.内含 B.外离
C.外切 D.相交
解析:选D 圆C1的标准方程为(x+1)2+(y+4)2=25,圆C2的标准方程为(x-2)2+(y-2)2=9,两圆的圆心距为=3,两圆的半径为r1=5,r2=3,满足r1+r2=8>3>2=r1-r2,故两圆相交.故选D.
2.(2019·闽侯第八中学期末)若圆Ω过点(0,-1),(0,5),且被直线x-y=0截得的弦长为2,则圆Ω的方程为( )
A.x2+(y-2)2=9或(x+4)2+(y-2)2=25
B.x2+(y-2)2=9或(x-1)2+(y-2)2=10
C.(x+4)2+(y-2)2=25或(x+4)2+(y-2)2=17
D.(x+4)2+(y-2)2=25或(x-4)2+(y-1)2=16
解析:选A 由于圆过点(0,-1),(0,5),故圆心在直线y=2上,设圆心坐标为(a,2),由弦长公式得=,解得a=0或a=-4.故圆心为(0,2),半径为3或圆心为(-4,2),半径为5,故选A.
3.(2019·北京海淀期末)已知直线x-y+m=0与圆O:x2+y2=1相交于A,B两点,且△OAB为正三角形,则实数m的值为( )
A. B.
C.或- D.或-
解析:选D 由题意得圆O:x2+y2=1的圆心坐标为(0,0),半径r=1.
因为△OAB为正三角形,则圆心O到直线x-y+m=0的距离为r=,即d==,解得m=或m=-,故选D.
4.(2019·南宁、梧州联考)直线y=kx+3被圆(x-2)2+(y-3)2=4截得的弦长为2,则直线的倾斜角为( )
A.或 B.-或
C.-或 D.
解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d==1.即d==1,所以k=±,由k=tan α,得α=或.故选A.
5.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是( )
A.(x-2)2+2=1
B.(x-2)2+(y+1)2=1
C.(x+2)2+(y-1)2=1
D.2+(y-1)2=1
解析:选A 由于圆心在第一象限且与x轴相切,故设圆心为(a,1)(a>0),又由圆与直线4x-3y=0相切可得=1,解得a=2,故圆的标准方程为(x-2)2+(y-1)2=1.
6.(2019·西安联考)直线y-1=k(x-3)被圆(x-2)2+(y-2)2=4所截得的最短弦长等于( )
A. B.2
C.2 D.
解析:选C 圆(x-2)2+(y-2)2=4的圆心C(2,2),半径为2,直线y-1=k(x-3), ∴此直线恒过定点P(3,1),当圆被直线截得的弦最短时,圆心C(2,2)与定点P(3,1)的连线垂直于弦,弦心距为=,所截得的最短弦长为2=2,故选C.
7.(2019·山西晋中模拟)半径为2的圆C的圆心在第四象限,且与直线x=0和x+y=2均相切,则该圆的标准方程为( )
A.(x-1)2+(y+2)2=4
B.(x-2)2+(y+2)2=2
C.(x-2)2+(y+2)2=4
D.(x-2)2+(y+2)2=4
解析:选C 设圆心坐标为(2,-a)(a>0),则圆心到直线x+y=2的距离d==2,∴a=2,∴该圆的标准方程为(x-2)2+(y+2)2=4,故选C.
8.(2018·唐山二模)圆E经过A(0,1),B(2,0),C(0,-1)三点,且圆心在x轴的正半轴上,则圆E的标准方程为( )
A.2+y2= B.2+y2=
C.2+y2= D.2+y2=
解析:选C 根据题意,设圆E的圆心坐标为(a,0)(a>0),半径为r,
则有解得a=,r2=,则圆E的标准方程为2+y2=.故选C.
9.(2018·合肥二模)已知圆C:(x-6)2+(y-8)2=4,O为坐标原点,则以OC为直径的圆的方程为( )
A.(x-3)2+(y+4)2=100 B.(x+3)2+(y-4)2=100
C.(x-3)2+(y-4)2=25 D.(x+3)2+(y-4)2=25
解析:选C 因为圆C的圆心的坐标C(6,8),
所以OC的中点坐标为E(3,4),
所求圆的半径|OE|==5,
故以OC为直径的圆的方程为(x-3)2+(y-4)2=25.故选C.
10.(2018·荆州二模)圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,则k的值是( )
A.2 B.-2
C.1 D.-1
解析:选B ∵圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,∴直线y=kx+3过圆心(1,1),即1=k+3,解得k=-2.故选B.
11.(2019·厦门质检)圆C与x轴相切于T(1,0),与y轴正半轴交于两点A,B,且|AB|=2,则圆C的标准方程为( )
A.(x-1)2+(y-)2=2 B.(x-1)2+(y-2)2=2
C.(x+1)2+(y+)2=4 D.(x-1)2+(y-)2=4
解析:选A 由题意得,圆C的半径为=,圆心坐标为(1,),∴圆C的标准方程为(x-1)2+(y-)2=2,故选A.
12.(2019·孝义一模)已知P为直线x+y-2=0上的点,过点P作圆O:x2+y2=1的切线,切点为M,N,若∠MPN=90°,则这样的点P有( )
A.0个 B.1个
C.2个 D.无数个
解析:选B 连接OM,ON,则OM=ON,∠MPN=∠ONP=∠OMP=90°,
∴四边形OMPN为正方形,
∵圆O的半径为1,∴|OP|=,
∵原点(圆心)O到直线x+y-2=0的距离为,
∴符合条件的点P只有一个,故选B.
13.(2019·北京东城联考)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A 直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,∴圆心到直线的距离d=,则|AB|=2=2=2,当k=1时,|AB|=2 =,即充分性成立;若|AB|=,则2=,即k2=1,解得k=1或k=-1,即必要性不成立,故“k=1”是“|AB|=”的充分不必要条件,故选A.
14.已知圆C:(x+1)2+(y-1)2=1与x轴切于A点,与y轴切于B点,设劣弧的中点为M,则过点M的圆C的切线方程是________________.
解析:因为圆C与两轴相切,且M是劣弧的中点,所以直线CM是第二、四象限的角平分线,所以斜率为-1,所以过M的切线的斜率为1.因为圆心到原点的距离为,所以|OM|=-1,所以M,所以切线方程为y-1+=x-+1,整理得x-y+2-=0.
答案:x-y+2-=0
15.(2018·枣庄二模)已知圆M与直线x-y=0及x-y+4=0都相切,且圆心在直线y=-x+2上,则圆M的标准方程为________________.
解析:∵圆M的圆心在y=-x+2上,
∴设圆心为(a,2-a),
∵圆M与直线x-y=0及x-y+4=0都相切,
∴圆心到直线x-y=0的距离等于圆心到直线x-y+4=0的距离,
即=,解得a=0,
∴圆心坐标为(0,2),圆M的半径为=,
∴圆M的标准方程为x2+(y-2)2=2.
答案:x2+(y-2)2=2
16.(2019·天津联考)以点(0,b)为圆心的圆与直线y=2x+1相切于点(1,3),则该圆的方程为____________________.
解析:由题意设圆的方程为x2+(y-b)2=r2(r>0).
根据条件得解得∴该圆的方程为x2+2=.
答案:x2+2=
17.(2019·丹东联考)经过三点A(1,3),B(4,2),C(1,-7)的圆的半径是________.
解析:易知圆心在线段AC的垂直平分线y=-2上,所以设圆心坐标为(a,-2),由(a-1)2+(-2-3)2=(a-4)2+(-2-2)2,得a=1,即圆心坐标为(1,-2),∴半径为r==5.
答案:5
18.(2019·镇江联考)已知圆C与圆x2+y2+10x+10y=0相切于原点,且过点A(0,-6),则圆C的标准方程为____________________.
解析:设圆C的标准方程为(x-a)2+(y-b)2=r2,其圆心为C(a,b),半径为r(r>0).
∵x2+y2+10x+10y=0可化简为(x+5)2+(y+5)2=50,
∴其圆心为(-5,-5),半径为5.
∵两圆相切于原点O,且圆C过点(0,-6),点(0,-6)在圆(x+5)2+(y+5)2=50内,
∴两圆内切,∴
解得a=-3,b=-3,r=3,
∴圆C的标准方程为(x+3)2+(y+3)2=18.
答案:(x+3)2+(y+3)2=18
相关资料
更多