还剩8页未读,
继续阅读
2020版高考数学(文)新设计一轮复习通用版讲义:第二章第二节 第1课时 系统知识——函数的单调性与最值、奇偶性、周期性
展开
第二节 函数的性质
[考纲要求]
1.理解函数的单调性、最大值、最小值及其几何意义.
2.会利用函数的图象理解和研究函数的单调性.
3.结合具体函数,了解函数奇偶性的含义.
4.会利用函数的图象理解和研究函数的奇偶性.
5.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
第1课时 系统知识——函数的单调性与最值、奇偶性、周期性
函数的单调性
1.单调函数的定义
增函数
减函数
定义
一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2
当x1
当x1f(x2),那么就说函数f(x)在区间D上是减函数
图象描述
自左向右看图象是上升的
自左向右看图象是下降的
2.单调区间的定义
若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.
[点拨] (1)函数单调性定义中的x1,x2具有以下三个特征:一是任意性,即“任意两数x1,x2∈D”,“任意”两字决不能丢;二是有大小,即x1x2);三是同属一个单调区间,三者缺一不可.
(2)若函数在区间D上单调递增(或递减),则对D内任意的两个不等自变量x1,x2的值,都有>0.
(3)函数f(x)在给定区间上的单调性,是函数在此区间上的整体性质,不一定代表在整个定义域上有此性质.
[谨记常用结论]
(1)函数f(x)与f(x)+c(c为常数)具有相同的单调性.
(2)k>0时,函数f(x)与kf(x)单调性相同;k<0时,函数f(x)与kf(x)单调性相反.
(3)若f(x)恒为正值或恒为负值,则f(x)与具有相反的单调性.
(4)若f(x),g(x)都是增(减)函数,则当两者都恒大于零时,f(x)·g(x)是增(减)函数;当两者都恒小于零时,f(x)·g(x)是减(增)函数.
(5)在公共定义域内,增+增=增,减+减=减,增-减=增,减-增=减.
1.函数f(x)=x2-2x的单调递增区间是________.
答案:[1,+∞)
2.如果二次函数f(x)=x2-(a-1)x+5在区间上是增函数,则实数a的取值范围为________.
解析:∵函数f(x)=x2-(a-1)x+5的对称轴为x=且在区间上是增函数,
∴≤,即a≤2.
答案:(-∞,2]
3.函数f(x)=log(x2-4)的单调递增区间为________.
解析:由x2-4>0得x<-2或x>2.
又u=x2-4在(-∞,-2)上为减函数,
在(2,+∞)上为增函数,
y=logu为减函数,
故f(x)的单调递增区间为(-∞,-2).
答案:(-∞,-2)
4.设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为________.
答案:[-1,1],[5,7]
5.若函数y=与y=log3(x-2)在(3,+∞)上具有相同的单调性,则实数k的取值范围是________.
解析:由于y=log3(x-2)的定义域为(2,+∞),
且为增函数,
故函数y===2+在(3,+∞)上也是增函数,则有4+k<0,得k<-4.
答案:(-∞,-4)
6.已知函数f(x)为定义在区间[-1,1]上的增函数,则满足f(x)
解析:由题设得解得-1≤x<.
答案:
函数的最值
1.函数的最值
前提
设函数f(x)的定义域为I,如果存在实数M满足
条件
对于任意x∈I,都有f(x)≤M;
存在x0∈I,使得f(x0)=M
对于任意x∈I,都有f(x)≥M;存在x0∈I,使得f(x0)=M
结论
M为最大值
M为最小值
2.函数最值存在的两条结论
(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.
(2)开区间上的“单峰”函数一定存在最大值或最小值.
[点拨] (1)对于单调函数,最大(小)值出现在定义域的边界处;
(2)对于非单调函数求最值,通常借助图象求解更方便;
(3)一般地,恒成立问题可以用求最值的方法来解决,而利用单调性是求最值的常用方法.注意以下关系:
f(x)≥a恒成立⇔f(x)min≥a;f(x)≤a恒成立⇔f(x)max≤a.解题时,要务必注意“=”的取舍.
1.函数f(x)=在[2,6]上的最大值是________.
答案:2
2.设函数f(x)=在区间[3,4]上的最大值和最小值分别为M,m,则=________.
解析:易知f(x)==2+,所以f(x)在区间[3,4]上单调递减,所以M=f(3)=2+=6,m=f(4)=2+=4,所以==.
答案:
3.若函数f(x)=-+b(a>0)在上的值域为,则a=________,b=________.
解析:∵f(x)=-+b(a>0)在上是增函数,
∴f(x)min=f=,f(x)max=f(2)=2.
即解得
答案:1
4.函数y=的值域为________.
解析:由y=,可得x2=.由x2≥0,知≥0,解得-1≤y<1,故所求函数的值域为[-1,1).
答案:[-1,1)
5.函数f(x)=的最大值为________.
解析:当x≥1时,函数f(x)=为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.
答案:2
6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为________.
解析:函数f(x)=-x2+4x+a=-(x-2)2+4+a,x∈[0,1],且函数f(x)有最小值-2.故当x=0时,函数f(x)有最小值,当x=1时,函数f(x)有最大值.∵当x=0时,f(0)=a=-2,∴f(x)=-x2+4x-2,∴当x=1时,f(x)max=f(1)=-12+4×1-2=1.
答案:1
函数的奇偶性
函数奇偶性的定义及图象特征
奇函数
偶函数
定义
一般地,如果对于函数f(x)的定义域内任意一个x
都有f(-x)=-f(x),那么函数f(x)就叫做奇函数
都有f(-x)=f(x),那么函数f(x)就叫做偶函数
图象特征
关于原点对称
关于y轴对称
[谨记常用结论]
1.函数奇偶性的几个重要结论
(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.
(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(3)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.
(4)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.
2.有关对称性的结论
(1)若函数y=f(x+a)为偶函数,则函数y=f(x)关于x=a对称.
若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)对称.
(2)若f(x)=f(2a-x),则函数f(x)关于x=a对称;若f(x)+f(2a-x)=2b,则函数f(x)关于点(a,b)对称.
1.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则f(-1)=________.
答案:-2
2.设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,则f(-2)+f(0)=________.
解析:由题意知f(-2)=-f(2)=-(22+1)=-5,f(0)=0,∴f(-2)+f(0)=-5.
答案:-5
3.已知函数f(x)为偶函数,且当x<0时,f(x)=x+1,则当x>0时,f(x)=________.
解析:当x>0时,-x<0,∴f(-x)=-x+1,又f(x)为偶函数,∴f(x)=-x+1.
答案:-x+1
4.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b 的值是________.
解析:∵f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴a+b=.
答案:
5.在函数y=xcos x,y=ex+x2,y=lg,y=xsin x中,偶函数的个数是________.
解析:y=xcos x是奇函数,y=lg和y=xsin x是偶函数,y=ex+x2是非奇非偶函数,所以偶函数的个数是2.
答案:2
6.已知函数f(x)=asin x+bln+t,若f+f=6,则实数t=________.
解析:令g(x)=asin x+bln,则易知g(x)为奇函数,所以g+g=0,则由f(x)=g(x)+t,得f+f=g+g+2t=2t=6,解得t=3.
答案:3
函数的周期性
1.周期函数
对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
2.最小正周期
如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
[谨记常用结论]
定义式f(x+T)=f(x)对定义域内的x是恒成立的.
(1)若f(x+a)=f(x+b),则函数f(x)的周期为T=|a-b|;
(2)若在定义域内满足f(x+a)=-f(x),f(x+a)=,f(x+a)=-(a>0),则f(x)为周期函数,且T=2a为它的一个周期.
1.设f(x)是定义在R上的周期为2的函数,当x∈(-1,1)时,f(x)=则f=________.
答案:1
2.若f(x)是R上周期为2的函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=________.
解析:由f(x)是R上周期为2的函数知,f(3)=f(1)=1,f(4)=f(2)=2,∴f(3)-f(4)=-1.
答案:-1
3.已知f(x)是定义在R上的函数,并且f(x+2)=,当2≤x≤3时,f(x)=x,则f(2 019)=________.
解析:由已知,可得f(x+4)=f[(x+2)+2]===f(x),故函数f(x)的周期为4.∴f(2 019)=f(4×504+3)=f(3)=3.
答案:3
4.函数f(x)的周期为4,且x∈(-2,2],f(x)=2x-x2,则f(2 018)+f(2 019)+ f(2 020)的值为________.
解析:由f(x)=2x-x2,x∈(-2,2],知f(-1)=-3,f(0)=0,f(2)=0,又f(x)的周期为4,所以f(2 018)+f(2 019)+f(2 020)=f(2)+f(-1)+f(0)=0-3+0=-3.
答案:-3
5.已知f(x)是R上的奇函数,且对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(2 019)=________.
解析:∵f(x)是R上的奇函数,∴f(0)=0,又对任意x∈R都有f(x+6)=f(x)+f(3),∴当x=-3时,有f(3)=f(-3)+f(3)=0,∴f(-3)=0,f(3)=0,∴f(x+6)=f(x),周期为6.故f(2 019)=f(3)=0.
答案:0
6.偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=________.
解析:因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x),又f(-x)=f(x),所以f(x)=f(4+x),则f(-1)=f(4-1)=f(3)=3.
答案:3
[课时跟踪检测]
1.下列函数为奇函数的是( )
A.y= B.y=|sin x|
C.y=cos x D.y=ex-e-x
解析:选D 因为函数y=的定义域为[0,+∞),不关于原点对称,所以函数y=为非奇非偶函数,排除A;因为y=|sin x|为偶函数,所以排除B;因为y=cos x为偶函数,所以排除C;因为y=f(x)=ex-e-x,f(-x)=e-x-ex=-(ex-e-x)=-f(x),所以函数y=ex-e-x为奇函数,故选D.
2.(2019·南昌调研)已知函数f(x)=,则该函数的单调递增区间为( )
A.(-∞,1] B.[3,+∞)
C.(-∞,-1] D.[1,+∞)
解析:选B 设t=x2-2x-3,由t≥0,得x2-2x-3≥0,解得x≤-1或x≥3.所以函数f(x)的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f(x)的单调递增区间为[3,+∞).
3.设f(x)-x2=g(x),x∈R,若函数f(x)为偶函数,则g(x)的解析式可以为( )
A.g(x)=x3 B.g(x)=cos x
C.g(x)=1+x D.g(x)=xex
解析:选B 因为f(x)=x2+g(x),且函数f(x)为偶函数,所以有(-x)2+g(-x)=x2+g(x),即g(-x)=g(x),所以g(x)为偶函数,由选项可知,只有选项B中的函数为偶函数,故选B.
4.(2019·三明模拟)函数y=f(x)是R上的奇函数,当x<0时,f(x)=2x,则当x>0时,f(x)=( )
A.-2x B.2-x
C.-2-x D.2x
解析:选C x>0,-x<0.∵当x<0时,f(x)=2x,∴当x>0时,f(-x)=2-x.∵f(x)是R上的奇函数,∴当x>0时,f(x)=-f(-x)=-2-x.故选C.
5.函数f(x)=的图象关于( )
A.x轴对称 B.原点对称
C.y轴对称 D.直线y=x对称
解析:选B f(x)的定义域为[-3,0)∪(0,3]关于原点对称,且f(-x)=-f(x),∴f(x)是奇函数,图象关于原点对称.
6.(2019·石家庄高三一检)已知函数f(x)为奇函数,当x>0时,f(x)单调递增,且f(1)=0,若f(x-1)>0,则x的取值范围为( )
A.{x|02} B.{x|x<0或x>2}
C.{x|x<0或x>3} D.{x|x<-1或x>1}
解析:选A 由于函数f(x)是奇函数,且当x>0时,f(x)单调递增,f(1)=0,故由f(x-1)>0,得-11,所以02,故选A.
7.(2019·天津模拟)若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1f(x2)”,则f(x)的解析式可以是( )
A.f(x)=(x-1)2 B.f(x)=ex
C.f(x)= D.f(x)=ln(x+1)
解析:选C 根据条件知,f(x)在(0,+∞)上单调递减.
对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;
对于B,f(x)=ex在(0,+∞)上单调递增,排除B;
对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D;
对于C,f(x)=在(0,+∞)上单调递减,故选C.
8.函数f(x)=则f(x)的最大值、最小值分别为( )
A.10,6 B.10,8
C.8,6 D.以上都不对
解析:选A 当1≤x≤2时,8≤2x+6≤10,当-1≤x<1时,6≤x+7<8.∴f(x)min=f(-1)=6,f(x)max=f(2)=10.
9.当0≤x≤2时,a<-x2+2x恒成立,则实数a的取值范围是( )
A.(-∞,1] B.(-∞,0]
C.(-∞,0) D.(0,+∞)
解析:选C 令f(x)=-x2+2x=-(x2-2x+1)+1=-(x-1)2+1(0≤x≤2),函数图象如图所示:∴f(x)最小值为f(0)=f(2)=0.而a<-x2+2x恒成立,∴a<0.
10.对于定义域为R的奇函数f(x),下列结论成立的是( )
A.f(x)-f(-x)>0 B.f(x)-f(-x)≤0
C.f(x)·f(-x)≤0 D.f(x)·f(-x)>0
解析:选C f(-x)=-f(x),
则f(x)·f(-x)=-f2(x)≤0.
11.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )
A.-2 B.2
C.-98 D.98
解析:选A 由f(x+4)=f(x),得f(7)=f(3)=f(-1).又∵f(x)为奇函数,∴f(-1)=-f(1),f(1)=2×12=2.∴f(7)=-2.故选A.
12.若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,则<0的解集为( )
A.(-3,3) B.(-∞,-3)∪(3,+∞)
C.(-3,0)∪(3,+∞) D.(-∞,-3)∪(0,3)
解析:选C ∵f(x)为偶函数,f(-x)=f(x),
故<0可化为<0,
而f(x)在(0,+∞)上是减函数,且f(3)=0,
故当x>3时,f(x)<0,当-30,
故<0的解集为(-3,0)∪(3,+∞).
13.已知函数f(x)=的最大值为M,最小值为m,则M+m等于( )
A.0 B.2
C.4 D.8
解析:选C f(x)==2+,设g(x)=,则g(-x)=-g(x)(x∈R),∴g(x)为奇函数,∴g(x)max+g(x)min=0.∵M=f(x)max=2+g(x)max,m=f(x)min=2+g(x)min,∴M+m=2+g(x)max+2+g(x)min=4,故选C.
14.若函数f(x)=在区间[2,a]上的最大值与最小值的和为,则a=________.
解析:由f(x)=的图象知,f(x)=在(0,+∞)上是减函数,∵[2,a]⊆(0,+∞),∴f(x)=在[2,a]上也是减函数,∴f(x)max=f(2)=,f(x)min=f(a)=,∴+=,∴a=4.
答案:4
15.(2019·郑州模拟)设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是________.
解析:由题意知g(x)=函数的图象为如图所示的实线部分,根据图象,知g(x)的递减区间是[0,1).
答案:[0,1)
16.设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x<1时,f(x)=2x-1,则f+f(1)+f+f(2)+f=________.
解析:依题意知:函数f(x)为奇函数且周期为2,
则f(1)+f(-1)=0,f(-1)=f(1),即f(1)=0.
∴f+f(1)+f+f(2)+f
=f+0+f+f(0)+f
=f-f+f(0)+f
=f+f(0)
=2-1+20-1
=-1.
答案:-1
[考纲要求]
1.理解函数的单调性、最大值、最小值及其几何意义.
2.会利用函数的图象理解和研究函数的单调性.
3.结合具体函数,了解函数奇偶性的含义.
4.会利用函数的图象理解和研究函数的奇偶性.
5.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
第1课时 系统知识——函数的单调性与最值、奇偶性、周期性
函数的单调性
1.单调函数的定义
增函数
减函数
定义
一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2
当x1
图象描述
自左向右看图象是上升的
自左向右看图象是下降的
2.单调区间的定义
若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.
[点拨] (1)函数单调性定义中的x1,x2具有以下三个特征:一是任意性,即“任意两数x1,x2∈D”,“任意”两字决不能丢;二是有大小,即x1
(2)若函数在区间D上单调递增(或递减),则对D内任意的两个不等自变量x1,x2的值,都有>0.
(3)函数f(x)在给定区间上的单调性,是函数在此区间上的整体性质,不一定代表在整个定义域上有此性质.
[谨记常用结论]
(1)函数f(x)与f(x)+c(c为常数)具有相同的单调性.
(2)k>0时,函数f(x)与kf(x)单调性相同;k<0时,函数f(x)与kf(x)单调性相反.
(3)若f(x)恒为正值或恒为负值,则f(x)与具有相反的单调性.
(4)若f(x),g(x)都是增(减)函数,则当两者都恒大于零时,f(x)·g(x)是增(减)函数;当两者都恒小于零时,f(x)·g(x)是减(增)函数.
(5)在公共定义域内,增+增=增,减+减=减,增-减=增,减-增=减.
1.函数f(x)=x2-2x的单调递增区间是________.
答案:[1,+∞)
2.如果二次函数f(x)=x2-(a-1)x+5在区间上是增函数,则实数a的取值范围为________.
解析:∵函数f(x)=x2-(a-1)x+5的对称轴为x=且在区间上是增函数,
∴≤,即a≤2.
答案:(-∞,2]
3.函数f(x)=log(x2-4)的单调递增区间为________.
解析:由x2-4>0得x<-2或x>2.
又u=x2-4在(-∞,-2)上为减函数,
在(2,+∞)上为增函数,
y=logu为减函数,
故f(x)的单调递增区间为(-∞,-2).
答案:(-∞,-2)
4.设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为________.
答案:[-1,1],[5,7]
5.若函数y=与y=log3(x-2)在(3,+∞)上具有相同的单调性,则实数k的取值范围是________.
解析:由于y=log3(x-2)的定义域为(2,+∞),
且为增函数,
故函数y===2+在(3,+∞)上也是增函数,则有4+k<0,得k<-4.
答案:(-∞,-4)
6.已知函数f(x)为定义在区间[-1,1]上的增函数,则满足f(x)
答案:
函数的最值
1.函数的最值
前提
设函数f(x)的定义域为I,如果存在实数M满足
条件
对于任意x∈I,都有f(x)≤M;
存在x0∈I,使得f(x0)=M
对于任意x∈I,都有f(x)≥M;存在x0∈I,使得f(x0)=M
结论
M为最大值
M为最小值
2.函数最值存在的两条结论
(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.
(2)开区间上的“单峰”函数一定存在最大值或最小值.
[点拨] (1)对于单调函数,最大(小)值出现在定义域的边界处;
(2)对于非单调函数求最值,通常借助图象求解更方便;
(3)一般地,恒成立问题可以用求最值的方法来解决,而利用单调性是求最值的常用方法.注意以下关系:
f(x)≥a恒成立⇔f(x)min≥a;f(x)≤a恒成立⇔f(x)max≤a.解题时,要务必注意“=”的取舍.
1.函数f(x)=在[2,6]上的最大值是________.
答案:2
2.设函数f(x)=在区间[3,4]上的最大值和最小值分别为M,m,则=________.
解析:易知f(x)==2+,所以f(x)在区间[3,4]上单调递减,所以M=f(3)=2+=6,m=f(4)=2+=4,所以==.
答案:
3.若函数f(x)=-+b(a>0)在上的值域为,则a=________,b=________.
解析:∵f(x)=-+b(a>0)在上是增函数,
∴f(x)min=f=,f(x)max=f(2)=2.
即解得
答案:1
4.函数y=的值域为________.
解析:由y=,可得x2=.由x2≥0,知≥0,解得-1≤y<1,故所求函数的值域为[-1,1).
答案:[-1,1)
5.函数f(x)=的最大值为________.
解析:当x≥1时,函数f(x)=为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.
答案:2
6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为________.
解析:函数f(x)=-x2+4x+a=-(x-2)2+4+a,x∈[0,1],且函数f(x)有最小值-2.故当x=0时,函数f(x)有最小值,当x=1时,函数f(x)有最大值.∵当x=0时,f(0)=a=-2,∴f(x)=-x2+4x-2,∴当x=1时,f(x)max=f(1)=-12+4×1-2=1.
答案:1
函数的奇偶性
函数奇偶性的定义及图象特征
奇函数
偶函数
定义
一般地,如果对于函数f(x)的定义域内任意一个x
都有f(-x)=-f(x),那么函数f(x)就叫做奇函数
都有f(-x)=f(x),那么函数f(x)就叫做偶函数
图象特征
关于原点对称
关于y轴对称
[谨记常用结论]
1.函数奇偶性的几个重要结论
(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.
(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(3)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.
(4)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.
2.有关对称性的结论
(1)若函数y=f(x+a)为偶函数,则函数y=f(x)关于x=a对称.
若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)对称.
(2)若f(x)=f(2a-x),则函数f(x)关于x=a对称;若f(x)+f(2a-x)=2b,则函数f(x)关于点(a,b)对称.
1.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则f(-1)=________.
答案:-2
2.设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,则f(-2)+f(0)=________.
解析:由题意知f(-2)=-f(2)=-(22+1)=-5,f(0)=0,∴f(-2)+f(0)=-5.
答案:-5
3.已知函数f(x)为偶函数,且当x<0时,f(x)=x+1,则当x>0时,f(x)=________.
解析:当x>0时,-x<0,∴f(-x)=-x+1,又f(x)为偶函数,∴f(x)=-x+1.
答案:-x+1
4.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b 的值是________.
解析:∵f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴a+b=.
答案:
5.在函数y=xcos x,y=ex+x2,y=lg,y=xsin x中,偶函数的个数是________.
解析:y=xcos x是奇函数,y=lg和y=xsin x是偶函数,y=ex+x2是非奇非偶函数,所以偶函数的个数是2.
答案:2
6.已知函数f(x)=asin x+bln+t,若f+f=6,则实数t=________.
解析:令g(x)=asin x+bln,则易知g(x)为奇函数,所以g+g=0,则由f(x)=g(x)+t,得f+f=g+g+2t=2t=6,解得t=3.
答案:3
函数的周期性
1.周期函数
对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
2.最小正周期
如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
[谨记常用结论]
定义式f(x+T)=f(x)对定义域内的x是恒成立的.
(1)若f(x+a)=f(x+b),则函数f(x)的周期为T=|a-b|;
(2)若在定义域内满足f(x+a)=-f(x),f(x+a)=,f(x+a)=-(a>0),则f(x)为周期函数,且T=2a为它的一个周期.
1.设f(x)是定义在R上的周期为2的函数,当x∈(-1,1)时,f(x)=则f=________.
答案:1
2.若f(x)是R上周期为2的函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=________.
解析:由f(x)是R上周期为2的函数知,f(3)=f(1)=1,f(4)=f(2)=2,∴f(3)-f(4)=-1.
答案:-1
3.已知f(x)是定义在R上的函数,并且f(x+2)=,当2≤x≤3时,f(x)=x,则f(2 019)=________.
解析:由已知,可得f(x+4)=f[(x+2)+2]===f(x),故函数f(x)的周期为4.∴f(2 019)=f(4×504+3)=f(3)=3.
答案:3
4.函数f(x)的周期为4,且x∈(-2,2],f(x)=2x-x2,则f(2 018)+f(2 019)+ f(2 020)的值为________.
解析:由f(x)=2x-x2,x∈(-2,2],知f(-1)=-3,f(0)=0,f(2)=0,又f(x)的周期为4,所以f(2 018)+f(2 019)+f(2 020)=f(2)+f(-1)+f(0)=0-3+0=-3.
答案:-3
5.已知f(x)是R上的奇函数,且对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(2 019)=________.
解析:∵f(x)是R上的奇函数,∴f(0)=0,又对任意x∈R都有f(x+6)=f(x)+f(3),∴当x=-3时,有f(3)=f(-3)+f(3)=0,∴f(-3)=0,f(3)=0,∴f(x+6)=f(x),周期为6.故f(2 019)=f(3)=0.
答案:0
6.偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=________.
解析:因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x),又f(-x)=f(x),所以f(x)=f(4+x),则f(-1)=f(4-1)=f(3)=3.
答案:3
[课时跟踪检测]
1.下列函数为奇函数的是( )
A.y= B.y=|sin x|
C.y=cos x D.y=ex-e-x
解析:选D 因为函数y=的定义域为[0,+∞),不关于原点对称,所以函数y=为非奇非偶函数,排除A;因为y=|sin x|为偶函数,所以排除B;因为y=cos x为偶函数,所以排除C;因为y=f(x)=ex-e-x,f(-x)=e-x-ex=-(ex-e-x)=-f(x),所以函数y=ex-e-x为奇函数,故选D.
2.(2019·南昌调研)已知函数f(x)=,则该函数的单调递增区间为( )
A.(-∞,1] B.[3,+∞)
C.(-∞,-1] D.[1,+∞)
解析:选B 设t=x2-2x-3,由t≥0,得x2-2x-3≥0,解得x≤-1或x≥3.所以函数f(x)的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f(x)的单调递增区间为[3,+∞).
3.设f(x)-x2=g(x),x∈R,若函数f(x)为偶函数,则g(x)的解析式可以为( )
A.g(x)=x3 B.g(x)=cos x
C.g(x)=1+x D.g(x)=xex
解析:选B 因为f(x)=x2+g(x),且函数f(x)为偶函数,所以有(-x)2+g(-x)=x2+g(x),即g(-x)=g(x),所以g(x)为偶函数,由选项可知,只有选项B中的函数为偶函数,故选B.
4.(2019·三明模拟)函数y=f(x)是R上的奇函数,当x<0时,f(x)=2x,则当x>0时,f(x)=( )
A.-2x B.2-x
C.-2-x D.2x
解析:选C x>0,-x<0.∵当x<0时,f(x)=2x,∴当x>0时,f(-x)=2-x.∵f(x)是R上的奇函数,∴当x>0时,f(x)=-f(-x)=-2-x.故选C.
5.函数f(x)=的图象关于( )
A.x轴对称 B.原点对称
C.y轴对称 D.直线y=x对称
解析:选B f(x)的定义域为[-3,0)∪(0,3]关于原点对称,且f(-x)=-f(x),∴f(x)是奇函数,图象关于原点对称.
6.(2019·石家庄高三一检)已知函数f(x)为奇函数,当x>0时,f(x)单调递增,且f(1)=0,若f(x-1)>0,则x的取值范围为( )
A.{x|0
C.{x|x<0或x>3} D.{x|x<-1或x>1}
解析:选A 由于函数f(x)是奇函数,且当x>0时,f(x)单调递增,f(1)=0,故由f(x-1)>0,得-1
7.(2019·天津模拟)若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1
A.f(x)=(x-1)2 B.f(x)=ex
C.f(x)= D.f(x)=ln(x+1)
解析:选C 根据条件知,f(x)在(0,+∞)上单调递减.
对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;
对于B,f(x)=ex在(0,+∞)上单调递增,排除B;
对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D;
对于C,f(x)=在(0,+∞)上单调递减,故选C.
8.函数f(x)=则f(x)的最大值、最小值分别为( )
A.10,6 B.10,8
C.8,6 D.以上都不对
解析:选A 当1≤x≤2时,8≤2x+6≤10,当-1≤x<1时,6≤x+7<8.∴f(x)min=f(-1)=6,f(x)max=f(2)=10.
9.当0≤x≤2时,a<-x2+2x恒成立,则实数a的取值范围是( )
A.(-∞,1] B.(-∞,0]
C.(-∞,0) D.(0,+∞)
解析:选C 令f(x)=-x2+2x=-(x2-2x+1)+1=-(x-1)2+1(0≤x≤2),函数图象如图所示:∴f(x)最小值为f(0)=f(2)=0.而a<-x2+2x恒成立,∴a<0.
10.对于定义域为R的奇函数f(x),下列结论成立的是( )
A.f(x)-f(-x)>0 B.f(x)-f(-x)≤0
C.f(x)·f(-x)≤0 D.f(x)·f(-x)>0
解析:选C f(-x)=-f(x),
则f(x)·f(-x)=-f2(x)≤0.
11.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )
A.-2 B.2
C.-98 D.98
解析:选A 由f(x+4)=f(x),得f(7)=f(3)=f(-1).又∵f(x)为奇函数,∴f(-1)=-f(1),f(1)=2×12=2.∴f(7)=-2.故选A.
12.若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,则<0的解集为( )
A.(-3,3) B.(-∞,-3)∪(3,+∞)
C.(-3,0)∪(3,+∞) D.(-∞,-3)∪(0,3)
解析:选C ∵f(x)为偶函数,f(-x)=f(x),
故<0可化为<0,
而f(x)在(0,+∞)上是减函数,且f(3)=0,
故当x>3时,f(x)<0,当-3
故<0的解集为(-3,0)∪(3,+∞).
13.已知函数f(x)=的最大值为M,最小值为m,则M+m等于( )
A.0 B.2
C.4 D.8
解析:选C f(x)==2+,设g(x)=,则g(-x)=-g(x)(x∈R),∴g(x)为奇函数,∴g(x)max+g(x)min=0.∵M=f(x)max=2+g(x)max,m=f(x)min=2+g(x)min,∴M+m=2+g(x)max+2+g(x)min=4,故选C.
14.若函数f(x)=在区间[2,a]上的最大值与最小值的和为,则a=________.
解析:由f(x)=的图象知,f(x)=在(0,+∞)上是减函数,∵[2,a]⊆(0,+∞),∴f(x)=在[2,a]上也是减函数,∴f(x)max=f(2)=,f(x)min=f(a)=,∴+=,∴a=4.
答案:4
15.(2019·郑州模拟)设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是________.
解析:由题意知g(x)=函数的图象为如图所示的实线部分,根据图象,知g(x)的递减区间是[0,1).
答案:[0,1)
16.设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x<1时,f(x)=2x-1,则f+f(1)+f+f(2)+f=________.
解析:依题意知:函数f(x)为奇函数且周期为2,
则f(1)+f(-1)=0,f(-1)=f(1),即f(1)=0.
∴f+f(1)+f+f(2)+f
=f+0+f+f(0)+f
=f-f+f(0)+f
=f+f(0)
=2-1+20-1
=-1.
答案:-1
相关资料
更多