![2020版高考数学(文)新设计一轮复习通用版讲义:第四章第七节正弦定理和余弦定理第1页](http://img-preview.51jiaoxi.com/3/3/5756849/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学(文)新设计一轮复习通用版讲义:第四章第七节正弦定理和余弦定理第2页](http://img-preview.51jiaoxi.com/3/3/5756849/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学(文)新设计一轮复习通用版讲义:第四章第七节正弦定理和余弦定理第3页](http://img-preview.51jiaoxi.com/3/3/5756849/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020版高考数学(文)新设计一轮复习通用版讲义:第四章第七节正弦定理和余弦定理
展开
第七节正弦定理和余弦定理
一、基础知识批注——理解深一点
1.正弦定理
===2R(R为△ABC外接圆的半径).
正弦定理的常见变形
(1)a=2Rsin A,b=2Rsin B,c=2Rsin C;
(2)sin A=,sin B=,sin C=;
(3)a∶b∶c=sin A∶sin B∶sin C;
(4)=.
2.余弦定理
a2=b2+c2-2bccos A;
b2=c2+a2-2cacos B;
c2=a2+b2-2abcos C.
余弦定理的常见变形
(1)cos A=;
(2)cos B=;
(3)cos C=.
3.三角形的面积公式
(1)S△ABC=aha(ha为边a上的高);
(2)S△ABC=absin C=bcsin A=acsin B;
(3)S=r(a+b+c)(r为三角形的内切圆半径).
二、常用结论汇总——规律多一点
1.三角形内角和定理
在△ABC中,A+B+C=π;变形:=-.
2.三角形中的三角函数关系
(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;
(3)sin=cos;(4)cos=sin.
3.三角形中的射影定理
在△ABC中,a=bcos C+ccos B;b=acos C+ccos A;c=bcos A+acos B.
4.用余弦定理判断三角形的形状
在△ABC中,a,b,c分别为角A,B,C的对边,当b2+c2-a2>0时,可知A为锐角;当b2+c2-a2=0时,可知A为直角;当b2+c2-a2sin B,则A>B.( )
(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.( )
(4)当b2+c2-a2>0时,三角形ABC为锐角三角形.( )
(5)在三角形中,已知两边和一角就能求三角形的面积.( )
答案:(1)× (2)√ (3)× (4)× (5)√
(二)选一选
1.已知△ABC中,角A,B,C所对的边分别为a,b,c,若A=,B=,a=1,则b=( )
A.2 B.1
C. D.
解析:选D 由正弦定理,得b===.
2.(2018·全国卷Ⅱ改编)在△ABC中,cos C=-,BC=1,AC=5,则AB=( )
A.4 B.
C. D.2
解析:选A 在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos C=52+12-2×5×1×=32,
∴AB==4.
3.在△ABC中,角A,B,C的对边分别为a,b,c,若a=18,b=24,A=45°,则此三角形解的情况为( )
A.无解 B.有两解
C.有一解 D.解的个数不确定
解析:选B ∵=,
∴sin B=sin A=sin 45°=.
又∵ab=2,∴B