2020高考数学一轮复习检测:第5章 第3节 等比数列及其前n项和(含解析)
展开限时规范训练(限时练·夯基练·提能练)
A级 基础夯实练
1.(2018·四川绵阳诊断性考试)设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5等于( )
A. B.
C. D.
解析:选B.设数列{an}的公比为q,则显然q≠1,由题意得解得或(舍去),∴S5===.
2.(2018·浙江丽水模拟)已知等比数列{an}的前n项和为Sn=a·2n-1+,则a的值为( )
A.- B.
C.- D.
解析:选A.当n≥2时,an=Sn-Sn-1=a·2n-1-a·2n-2=a·2n-2,当n=1时,a1=S1=a+,所以a+=,所以a=-.
3.(2018·东北六校联考)已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则的值为( )
A. B.
C. D.
解析:选C.因为1,a1,a2,9是等差数列,所以a1+a2=1+9=10.又1,b1,b2,b3,9是等比数列,所以b=1×9=9,因为b=b2>0,所以b2=3,所以=.
4.(2018·河北三市第二次联考)古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )
A.7 B.8
C.9 D.10
解析:选B.设该女子第一天织布x尺,则=5,得x=,
∴前n天所织布的尺数为(2n-1).由(2n-1)≥30,得2n≥187,则n的最小值为8.
5.(2018·福州模拟)已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log(a5+a7+a9)的值是( )
A.-5 B.-
C.5 D.
解析:选A.因为log3an+1=log3an+1,所以an+1=3an.
所以数列{an}是公比q=3的等比数列,
所以a2+a4+a6=a2(1+q2+q4)=9.
所以a5+a7+a9=a5(1+q2+q4)=a2q3(1+q2+q4)=9×33=35.
所以log35=-log335=-5.
6.(2018·河南四校联考)在等比数列{an}中,an>0,a1+a2+…+a8=4,a1a2·…·a8=16,则++…+的值为( )
A.2 B.4
C.8 D.16
解析:选A.由分数的性质得到++…+=++…+.因为a8a1=a7a2=a3a6=a4a5,所以原式==,又a1a2·…·a8=16=(a4a5)4,an>0,∴a4a5=2,∴++…+=2.
7.(2018·青岛二模)已知{an}是等比数列,a2=2,a5=,则a1a2+a2a3+…+anan+1(n∈N*)的取值范围是( )
A.[12,16] B.
C. D.
解析:选C.因为{an}是等比数列,a2=2,a5=,所以q3==,q=,a1=4,故a1a2+a2a3+…+anan+1==(1-q2n)∈,故选C.
8.(2018·兰州、张掖联考)已知数列{an}的首项为1,数列{bn}为等比数列且bn=,若b10·b11=2,则a21=________.
解析:∵b1==a2,b2=,
∴a3=b2a2=b1b2,∵b3=,
∴a4=b1b2b3,…,an=b1b2b3·…·bn-1,
∴a21=b1b2b3·…·b20=(b10b11)10=210=1 024.
答案:1 024
9.设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2·…·an的最大值为________.
解析:设等比数列{an}的公比为q,则由a1+a3=10,a2+a4=q(a1+a3)=5,知q=.又a1+a1q2=10,
∴a1=8.
故a1a2·…·an=aq1+2+…+(n-1)=23n·
=23n-+=2-+n.
记t=-+=-(n2-7n)=-2+,
结合n∈N*可知n=3或4时,t有最大值6.
又y=2t为增函数,从而a1a2·…·an的最大值为26=64.
答案:64
10.(2018·广东中山调研)设数列{an}的前n项和为Sn,a1=1,且数列{Sn}是以2为公比的等比数列.
(1)求数列{an}的通项公式;
(2)求a1+a3+…+a2n+1.
解:(1)∵S1=a1=1,
且数列{Sn}是以2为公比的等比数列,
∴Sn=2n-1,
又当n≥2时,an=Sn-Sn-1=2n-2(2-1)=2n-2.
当n=1时a1=1,不适合上式.
∴an=
(2)∵a3,a5,…,a2n+1是以2为首项,以4为公比的等比数列,
∴a3+a5+…+a2n+1==.
∴a1+a3+…+a2n+1=1+=.
B级 能力提升练
11.设{an}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n-1+a2n<0”的( )
A.充要条件 B.充分而不必要条件
C.必要而不充分条件 D.既不充分也不必要条件
解析:选C.若对任意的正整数n,a2n-1+a2n<0,则a1+a2<0,又a1>0,所以a2<0,所以q=<0.若q<0,可取q=-1,a1=1,则a1+a2=1-1=0,不满足对任意的正整数n,a2n-1+a2n<0.所以“q<0”是“对任意的正整数n,a2n-1+a2n<0”的必要而不充分条件,故选C.
12.(2018·济南模拟)设数列{an}是以3为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,则ba1+ba2+ba3+ba4=( )
A.15 B.60
C.63 D.72
解析:选B.由数列{an}是以3为首项,1为公差的等差数列,得数列{an}的通项公式为an=3+(n-1)1=n+2.由数列{bn}是以1为首项,2为公比的等比数列,得数列{bn}的通项公式为bn=b1qn-1=2n-1,所以ban=2n+1,所以ba1+ba2+ba3+ba4=22+23+24+25==60.
13.(2018·湖北黄石检测)已知等差数列{an}的公差d>0,且a2,a5-1,a10成等比数列,若a1=5,Sn为数列{an}的前n项和,则的最小值为________.
解析:由于a2,a5-1,a10成等比数列,所以(a5-1)2=a2·a10,(a1+4d-1)2=(a1+d)·(a1+9d),又a1=5,所以d=3,所以an=5+3(n-1)=3n+2,Sn=na1+d=5n+n(n-1),所以==[3(n+1)++2]≥,当且仅当3(n+1)=,即n=2时等号成立.
答案:
14.已知数列{an}的前n项和Sn=1+λan,其中λ≠0.
(1)证明{an}是等比数列,并求其通项公式;
(2)若S5=,求λ.
解:(1)证明:由题意得a1=S1=1+λa1,
故λ≠1,a1=,故a1≠0.
由Sn=1+λan,Sn+1=1+λan+1得an+1=λan+1-λan,
即an+1(λ-1)=λan.
由a1≠0,λ≠0得an≠0,所以=.
因此{an}是首项为,公比为的等比数列,
于是an=n-1.
(2)由(1)得Sn=1-n.
由S5=得1-5=,即5=.
解得λ=-1.
15.(2018·河北省“五个一名校联盟”高三模拟)已知数列{an}是等差数列,a2=6,前n项和为Sn,数列{bn}是等比数列,b2=2,a1b3=12,S3+b1=19.
(1)求{an},{bn}的通项公式;
(2)求数列{bncos(anπ)}的前n项和Tn.
解:(1)∵数列{an}是等差数列,a2=6,
∴S3+b1=3a2+b1=18+b1=19,
∴b1=1,
∵b2=2,数列{bn}是等比数列,
∴bn=2n-1.
∴b3=4,
∵a1b3=12,∴a1=3,
∵a2=6,数列{an}是等差数列,
∴an=3n.
(2)设Cn=bncos(anπ),由(1)得Cn=bncos(anπ)=(-1)n2n-1,
则Cn+1=(-1)n+12n,
∴=-2,
又C1=-1,
∴数列{bncos(anπ)}是以-1为首项、-2为公比的等比数列.
∴Tn==[(-2)n-1].
C级 素养加强练
16.(2018·辽宁鞍山模拟)已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得++…+≥1?若存在,求m的最小值;若不存在,说明理由.
解:(1)设等比数列{an}的公比为q,
则由已知可得
解得或
故an=·3n-1,或an=-5·(-1)n-1.
(2)若an=·3n-1,则=·n-1,
故是首项为,公比为的等比数列 ,
从而==·<<1.
若an=(-5)·(-1)n-1,
则=-(-1)n-1,
故是首项为-,公比为-1的等比数列,从而
=
故<1.
综上,对任意正整数m,总有<1.
故不存在正整数m,使得++…+≥1成立.