初中3.4 实际问题与一元一次方程精品综合训练题
展开1.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
A.2×1000(26﹣x)=800xB.1000(13﹣x)=800x
C.1000(26﹣x)=2×800xD.1000(26﹣x)=800x
2.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是( )
A.①②B.②④C.②③D.③④
3.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为( )
A.B.2x+8=3x﹣12C.D.=
4.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程( )
A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2
C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣2
5.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程( )
A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9
C.+2=D.﹣2=
6.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是( )
A.(1+50%)x×80%=x﹣28B.(1+50%)x×80%=x+28
C.(1+50%x)×80%=x﹣28D.(1+50%x)×80%=x+28
7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )
A.3场B.4场C.5场D.6场
8.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )
A.240元B.250元C.280元D.300元
9.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为( )
A.16cm2B.20cm2C.80cm2D.160cm2
二.填空题
10.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是 元.
11.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有 人.
12.某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为
13.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得 .
14.某数的一半比它本身的大12,若设这个数为x,可列方程为 .
15.一商店将某种服装按成本价提高50%标价,又以9折优惠卖出,结果每件仍获利25元,这种服装每件的成本为多少元?设这种服装每件的成本为x元,根据题意列出的方程是 .
16.一个三位数,十位上的数字比个位上的数字大2,百位上的数字比个位上的数字小2,而这三个数位上的数字和的17倍等于这个三位数,如果设个位数字为x,列方程为 .
17.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x表示珐琅书签的销量,则可列出一元一次方程 .
18.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款 元.
19.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是 .
三.解答题
20.根据下列问题,列出方程,不必求解.
(1)把若干本书发给学生,如果每人发4本,还剩下2本;如果每人发5本,还差5本,问共有多少学生?
(2)某班50名学生准备集体去看电影,电影票中有15元的和20元的,买电影票共花880元,问这两种电影票各买几张?
(3)足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛负5场,共得19分,那么这个队胜了多少场?
21.甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.
(1)求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)
(2)若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?
22.苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
23.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).
(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
参考答案
一.选择题
1.解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得
1000(26﹣x)=2×800x,故C答案正确,
故选:C.
2.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;
根据客车数列方程,应该为,②错误,③正确;
所以正确的是③④.
故选:D.
3.解:设有糖果x颗,
根据题意得:=.
故选:A.
4.解:设长方形的长为xcm,则宽是(13﹣x)cm,
根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:
x﹣1=(13﹣x)+2,
故选:B.
5.解:设有x辆车,则可列方程:
3(x﹣2)=2x+9.
故选:A.
6.解:标价为:x(1+50%),
八折出售的价格为:(1+50%)x×80%;
∴可列方程为:(1+50%)x×80%=x+28,
故选:B.
7.解:设共胜了x场,则平了(14﹣5﹣x)场,
由题意得:3x+(14﹣5﹣x)=19,
解得:x=5,即这个队胜了5场.
故选:C.
8.解:设这种商品每件的进价为x元,
由题意得:330×0.8﹣x=10%x,
解得:x=240,即这种商品每件的进价为240元.
故选:A.
9.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x﹣4cm,宽是5cm,
则4x=5(x﹣4),
去括号,可得:4x=5x﹣20,
移项,可得:5x﹣4x=20,
解得x=20
4x=4×20=80(cm2)
所以每一个长条面积为80cm2.
故选:C.
二.填空题
10.解:设每件的进价为x元,由题意得:
200×80%=x(1+25%),
解得:x=128,
故答案为:128.
11.解:设宿舍有x间房,则:
8x+12=9(x﹣2),
解得x=30,
∴8x+12=252.
答:这个学校的住宿生有252人.
故答案是:252.
12.解:设春游的总人数是x人.
根据题意所列方程为=,
故答案为:=.
13.解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得
1000(26﹣x)=2×800x,
故答案为:1000(26﹣x)=2×800x
14.解:设这个数为x,根据题意,得:x﹣12=x.
故答案是:x﹣12=x.
15.解:设这种服装每件的成本价是x元,由题意得:
(1+50%)x×90%=x+25,
故答案为:(1+50%)x×90%=x+25.
16.解:设个位数字为x,则十位上的数字为(x+2),百位上的数字为(x﹣2),由题意,得:
17(x﹣2+x+2+x)=100(x﹣2)+10(x+2)+x,
故答案为:17(x﹣2+x+2+x)=100(x﹣2)+10(x+2)+x.
17.解:设珐琅书签的销售了x件,则文创笔记本销售了(2x﹣700)件,
根据题意得:(2x﹣700)+x=5900.
故答案为:(2x﹣700)+x=5900.
18.解:设小华购买了x个笔袋,
根据题意得:18(x﹣1)﹣18×0.9x=36,
解得:x=30,
∴18×0.9x=18×0.9×30=486.
答:小华结账时实际付款486元.
故答案为:486.
19.解:根据题意得:0﹣(x+2)=x+2﹣x,
解得:x=﹣4.
故答案为:﹣4.
三.解答题
20.解:(1)设共有x名学生,
4x+2=5x﹣5;
(2)设票价为15元的x张,则票价为20元的(50﹣x)张,
15x+20(50﹣x)=880;
(3)设这个队胜了x场,
3x+1×(14﹣5﹣x)+0×5=19.
21.解:(1)设乙的速度是每分钟x米,则甲的速度是每分钟(x+200)米,依题意有
3x+150=200×3,
解得x=150,
x+200=150+200=350.
答:甲的速度是每分钟350米,乙的速度是每分钟150米.
(2)(200×3﹣300×1.2)÷1.2
=(600﹣360)÷1.2
=240÷1.2
=200(米),
200﹣150=50(米).
答:乙的速度至少要提高每分钟50米.
22.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.
①当选购A,B两种电视机时,B种电视机购(50﹣x)台,可得方程:
1500x+2100(50﹣x)=90000,即5x+7(50﹣x)=300,
解得:x=25,
则B种电视机购50﹣25=25(台);
②当选购A,C两种电视机时,C种电视机购(50﹣x)台,可得方程:
1500x+2500(50﹣x)=90000,
解得:x=35,
则C种电视机购50﹣35=15(台);
③当购B,C两种电视机时,C种电视机为(50﹣y)台,可得方程:
2100y+2500(50﹣y)=90000,
解得:y=,(不合题意,舍去)
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利150×25+200×25=8750(元),
若选择(1)中的方案②,可获利150×35+250×15=9000(元),
因为9000>8750,
所以为了获利最多,选择第二种方案.
23.解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得
3t+3×4t=15,
解得:t=1,
∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.
如图:
(2)设x秒时原点恰好在A、B的中间,由题意,得
3+x=12﹣4x,
解得:x=1.8.
∴A、B运动1.8秒时,原点就在点A、点B的中间;
(3)由题意,得
B追上A的时间为:15÷(4﹣1)=5,
∴C行驶的路程为:5×20=100单位长度.
人教版七年级上册3.4 实际问题与一元一次方程精品综合训练题: 这是一份人教版七年级上册3.4 实际问题与一元一次方程精品综合训练题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版七年级上册3.4 实际问题与一元一次方程同步练习题: 这是一份初中数学人教版七年级上册3.4 实际问题与一元一次方程同步练习题,共9页。试卷主要包含了《增删算法统宗》记载等内容,欢迎下载使用。
人教版七年级上册3.4 实际问题与一元一次方程精品当堂检测题: 这是一份人教版七年级上册3.4 实际问题与一元一次方程精品当堂检测题,共6页。试卷主要包含了8x=10 D等内容,欢迎下载使用。