【数学】贵州省遵义市南白中学2019-2020学年高二上学期第三次月考(文) 试卷
展开
贵州省遵义市南白中学2019-2020学年高二上学期第三次月考(文)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名,准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷(选择题)一、选择题:(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则( )A. B. C. D.2.己知等差数列中,,则( )A.8 B.7 C.14 D.163.椭圆的离心率为( )A. B. C. D.4.命题“”的否定为( )A. B.C. D.5.若一个正方体截去一个三棱锥后所得的几何体如图所示.则该几何体的正视图是( ) A. B. C. D.6.已知,,,则( ) A. B. C. D.7.已知函数是定义在上的偶函数,且函数在上是减函数,如果,则不等式的解集为( )A. B. C. D.8.已知命题:直线与直线垂直,:原点到直线的距离为,则( )A.为假 B.为真 C.为真 D.为真9.已知,,且是的必要不充分条件,则实数的取值范围为( )A. B. C.或 D.或10.明代数学家程大位(1533-1606 年)所著《算法统宗》中有这样一个问题:“旷野之地有个桩,桩上系着一腔羊,团团踏破三亩二.试问羊绳几丈长”.意思是“一条绳索系着一只羊,羊踏坏一块面积为亩的圆形庄稼,试求绳的长度(即圆形半径)”(明代度量制:步=尺,亩=平方步,丈=尺,圆周率.)( )A.丈 B.丈 C.丈 D.丈11.函数的图像大致为 ( )A. B. C. D.12.已知函数是定义域为的奇函数,且满足,若函数有两个零点.其中,分别记为,则的取值范围是 ( )A. B. C. D.第Ⅱ卷(非选择题)二、填空题(本大题共4个小题,每小题5分,共20分,将答案填在答题纸上)13.向量,若,则实数 .14.平行直线与之间的距离为 .15.在△ABC中,如果,那么等于 .16.已知,分别为椭圆的左、右焦点,若直线上存在点,使为等腰三角形,则椭圆离心率的范围是 .三、解答题 (本大题共6个小题,第17题10分,其余每个题12分,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列的前项和为,有,.(Ⅰ)求数列的通项公式;(Ⅱ)令,记数列的前项和为,证明:. 18.《中华人民共和国道路交通安全法》第条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第条规定:对不礼让行人的驾驶员处以扣分,罚款元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:月份违章驾驶员人数(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程;(Ⅱ)预测该路口月份的不“礼让斑马线”违章驾驶员人数.参考公式: ,参考数据:. 19.已知四面体中面,,垂足为,,为中点,,.(Ⅰ)求证: 面;(Ⅱ)求三棱锥的体积. 20.三个内角A,B,C对应的三条边长分别是,且满足.(Ⅰ)求角的大小;(Ⅱ)若,,求. 21.如图,四棱锥中,平面,底面是正方形,且,为中点.(Ⅰ)求证:平面;(Ⅱ)求点到平面的距离. 22.在平面直角坐标系中,已知椭圆的离心率为,点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与圆相切,与椭圆相交于两点,求证:是定值.
参考答案一、选择题:(共12个小题,每小题5分,共60分)123456789101112CBADACDBACBD二、填空题:(共4个小题,每小题5分,共20分)13. 14. 15. 16.三、解答题:(共6个小题,共70分)17.(本大题10分)解:(Ⅰ)设数列的公差为,有解得,有············································3分数列的通项公式为··················································5分(Ⅱ)由(1)知········································7分有由,,由上知····································10分18.(本大题12分)解:(Ⅰ)由表中数据知, ∴ ··············································4分∴所求回归直线方程为·······························6分(Ⅱ)令,则人该路口月份的不“礼让斑马线”违章驾驶员人数预计为49人····················12分19.(本大题12分)解:(Ⅰ)因为,所以为中点,又因为是中点所以·····················································3分而面,面所以面················································6分(Ⅱ)由已知得,,,三角形的面积···········································9分··········································12分20.(本大题12分)解:(Ⅰ)由正弦定理得····························································3分由已知得,,因为,所以····················································6分(Ⅱ)由余弦定理,得···················································9分即,解得或,负值舍去,所以·····································································12分21.(本大题12分)解:(Ⅰ)证明:平面,又正方形中,平面·························································3分又平面,,,是的中点,平面·························································6分(Ⅱ)过点作于点,由(1)知平面平面,又平面平面,平面,线段的长度就是点到平面的距离·····································8分,,···············································12分22.(本大题12分)解:(Ⅰ)由题意得:即 ············································2分 椭圆方程为将代入椭圆方程得: 椭圆的方程为:············································5分(Ⅱ)①当直线斜率不存在时,方程为:或当时,,,此时 当时,同理可得·········································7分②当直线斜率存在时,设方程为:,即直线与圆相切 ,即联立得:设, ,············································9分代入整理可得: 综上所述:为定值·····················································12分