|教案下载
搜索
    上传资料 赚现金
    人教版八年级数学下册17.1第1课时《勾股定理》教案(含反思)
    立即下载
    加入资料篮
    人教版八年级数学下册17.1第1课时《勾股定理》教案(含反思)01
    还剩1页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级下册第十七章 勾股定理17.1 勾股定理公开课第1课时教案

    展开
    这是一份人教版八年级下册第十七章 勾股定理17.1 勾股定理公开课第1课时教案,共2页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    第1课时 勾股定理





    1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)


    2.掌握勾股定理,并运用它解决简单的计算题;(重点)


    3.了解利用拼图验证勾股定理的方法.(难点)











    一、情境导入





    如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?


    二、合作探究


    探究点一:勾股定理


    【类型一】 直接运用勾股定理


    如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:





    (1)AC的长;


    (2)S△ABC;


    (3)CD的长.


    解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.


    解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=eq \r(AB2-BC2)=12cm;


    (2)S△ABC=eq \f(1,2)CB·AC=eq \f(1,2)×5×12=30(cm2);


    (3)∵S△ABC=eq \f(1,2)AC·BC=eq \f(1,2)CD·AB,∴CD=eq \f(AC·BC,AB)=eq \f(60,13)cm.


    方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.


    【类型二】 分类讨论思想在勾股定理中的应用


    在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.


    解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.


    解:此题应分两种情况说明:


    (1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=eq \r(AB2-AD2)=eq \r(152-122)=9.在Rt△ACD中,CD=eq \r(AC2-AD2)=eq \r(132-122)=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;





    (2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=eq \r(AB2-AD2)=eq \r(152-122)=9.在Rt△ACD中,CD=eq \r(AC2-AD2)=eq \r(132-122)=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.


    方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.


    【类型三】 勾股定理的证明


    探索与研究:


    方法1:如图:


    对任意的符合条件的直角三角形ABC绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;


    方法2:如图:


    该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?


    解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.


    解:方法1:S正方形ACFD=S四边形ABFE=S△BAE+S△BFE,即b2=eq \f(1,2)c2+eq \f(1,2)(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;


    方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD=S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即eq \f(1,2)b2+eq \f(1,2)ab=eq \f(1,2)c2+eq \f(1,2)a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.


    方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.


    探究点二:勾股定理与图形的面积


    如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.





    解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.


    方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.


    三、板书设计


    1.勾股定理


    如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.


    2.勾股定理的证明


    “赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.


    3.勾股定理与图形的面积





    课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.
    相关教案

    初中数学人教版八年级下册17.1 勾股定理第1课时教学设计: 这是一份初中数学人教版八年级下册17.1 勾股定理第1课时教学设计,共10页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。

    人教版八年级下册第十七章 勾股定理17.1 勾股定理第1课时教案: 这是一份人教版八年级下册第十七章 勾股定理17.1 勾股定理第1课时教案,共3页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点等内容,欢迎下载使用。

    数学八年级下册17.1 勾股定理第1课时教案设计: 这是一份数学八年级下册17.1 勾股定理第1课时教案设计,共9页。教案主要包含了导入,课堂小结,作业等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版八年级数学下册17.1第1课时《勾股定理》教案(含反思)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map