终身会员
搜索
    上传资料 赚现金
    人教版八年级数学下册17.1第2课时《勾股定理的应用》教案(含反思)
    立即下载
    加入资料篮
    人教版八年级数学下册17.1第2课时《勾股定理的应用》教案(含反思)01
    还剩2页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学17.1 勾股定理公开课第2课时教案设计

    展开
    这是一份初中数学17.1 勾股定理公开课第2课时教案设计,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。







    1.熟练运用勾股定理解决实际问题;(重点)


    2.掌握勾股定理的简单应用,探究最短距离问题.(难点)











    一、情境导入





    如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?


    二、合作探究


    探究点一:勾股定理的实际应用


    【类型一】 勾股定理在实际问题中的应用





    如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?


    解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.


    解:在Rt△ABC中,BC=13米,AC=5米,则AB=eq \r(BC2-AC2)=12米.6秒后,B′C=13-0.5×6=10米,则AB′=eq \r(B′C2-AC2)=5eq \r(3)(米),则船向岸边移动的距离为(12-5eq \r(3))米.


    方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.


    【类型二】 利用勾股定理解决方位角问题


    如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100eq \r(3)km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.


    解析:根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.





    解:∵AD∥BE,∴∠ABE=∠DAB=60°.∵∠CBF=30°,∴∠ABC=180°-∠ABE-∠CBF=180°-60°-30°=90°.在Rt△ABC中,AB=100eq \r(3)km,BC=100km,∴AC=eq \r(AB2+BC2)=eq \r((100\r(3))2+1002)=200(km),∴A、C两点之间的距离为200km.


    方法总结:先确定△ABC是直角三角形,再根据各边长,用勾股定理可求出AC的长.


    【类型三】 利用勾股定理解决立体图形最短距离问题





    如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?


    解:分两种情况比较最短距离:





    如图①所示,蚂蚁爬行最短路线为AM,AM=eq \r(102+(20+5)2)=5eq \r(29)(cm),如图②所示,蚂蚁爬行最短路线为AM,AM=eq \r(202+(10+5)2)=25(cm).∵5eq \r(29)>25,∴第二种短些,此时最短距离为25cm.


    答:需要爬行的最短距离是25cm.


    方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.


    【类型四】 运用勾股定理解决折叠中的有关计算


    如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,则AM的长是( )





    A.1.5 B.2 C.2.25 D.2.5


    解析:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2.在Rt△MDB′中,MD2+DB′2.∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.故选B.


    方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.


    【类型五】 勾股定理与方程思想、数形结合思想的应用





    如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.


    解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2.设BC=am,AC=bm,AD=xm,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.


    解:在Rt△ABC中,∠B=90°,设BC=am,AC=bm,AD=xm.∵两猴子所经过的路程都是15m,则10+a=x+b=15m.∴a=5,b=15-x.又∵在Rt△ABC中,由勾股定理得(10+x)2+a2=b2,∴(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).


    答:树高AB为12米.


    方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.


    探究点二:勾股定理与数轴


    如图所示,数轴上点A所表示的数为a,则a的值是( )





    A.eq \r(5)+1 B.-eq \r(5)+1


    C.eq \r(5)-1 D.eq \r(5)


    解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为eq \r(12+22)=eq \r(5),∴-1到A的距离是eq \r(,5).那么点A所表示的数为eq \r(5)-1.故选C.


    方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的位置,再根据A的位置来确定a的值.


    三、板书设计


    1.勾股定理的应用


    方位角问题;路程最短问题;折叠问题;数形结合思想.


    2.勾股定理与数轴





    本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.


    相关教案

    人教版八年级下册第十七章 勾股定理17.1 勾股定理第2课时教案及反思: 这是一份人教版八年级下册第十七章 勾股定理17.1 勾股定理第2课时教案及反思,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    初中数学人教版八年级下册17.1 勾股定理教案: 这是一份初中数学人教版八年级下册17.1 勾股定理教案,共5页。教案主要包含了回顾思考,展示目标,情景导入,自学指导,合作探究,拓展延伸,总结提升,达标检测等内容,欢迎下载使用。

    人教版17.1 勾股定理公开课教案及反思: 这是一份人教版17.1 勾股定理公开课教案及反思,共3页。教案主要包含了知识与技能,过程与方法,情感态度与价值观等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版八年级数学下册17.1第2课时《勾股定理的应用》教案(含反思)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map