初中华师大版18.2 平行四边形的判定教案
展开教学目的:
1、掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;
2.理解“两组对角分别相等的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;
3.培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力;
教学重点:理解掌握“对角线互相平分的四边形是平行四边形,两组对角分别相等的四边形是平行四边形”这一判定定理。
教学难点:判定定理的证明方法及运用。
教学过程:
一.复习导入
1.用定义法证明一个四边形是平行四边形时,要什么条件?
2.用所学的判定方法一、二判定一个四边形的平行四边形的条件是什么?
3.平行四边形的对角线互相平分的逆命题如何表达?是否是真命题?
二、新课讲解:
设问:“对角线互相平分的四边形是平行四边形。”这一命题的前提什么?结论又是什么?
活动:用事先准备好的纸条按课本探究方法做,让学生判定这个四边形是否是平行四边形。
判定方法三:对角线互相平分的四边形是平行四边形。
这个方法的前提是什么?结论又是什么?
已知:如图:在四边形ABCD中,AC、BD相交于O,OA=OC,OB=OD。
求证:四边形ABCD是平行四边形。
分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行。(较简单的)(3)一组对边平行且相等。
板书证过程。
小结:由刚才证明可得,只要有对角线互相平分,可判定这个四边形是平行四边形。
几何语言表达:
∵OA=OC, OB= OD
∴四边形ABCD是平行四边形
例题讲解:课本P86例2。
分析:由题意可得OB=OD,再由OA=OF,AE=AF,可得OE=OF。可证四边形EBFD是平行四边形。
设问:若是两组对角分别相等的四边形,是不是平行四边形?前提是什么?结论是什么?
A B
已知:在四边形ABCD中,∠A =∠C
∠B=∠D。 D C
求证:四边形ABCD是平行四边形(让学生板书,然后小结)
练习:延长三角形ABC的中线BD至E,
使DE=BD,连结AE、CE,如图,
求证:∠BAE=∠BCE。
证明方法:由对角线互相平分可证四边形ABCE为平行四边形,可得∠BAE=∠BCE。
本课小结:目前,我们研究平行四边形的哪些性质和判定:
平行四边形的性质:对边平行;对边相等;对角线互相平分;夹在平行线间的平行线段相等;对角相等;邻角互补;
平行四边形的判定:两组对边平行;两组对边相等;两组对角相等;对角线互相平分的四边形。
作业布置:
1、熟记判定定理;
2、课本作业。
华师大版八年级下册第18章 平行四边形18.2 平行四边形的判定教案设计: 这是一份华师大版八年级下册第18章 平行四边形18.2 平行四边形的判定教案设计,共3页。
初中数学华师大版八年级下册18.2 平行四边形的判定教学设计: 这是一份初中数学华师大版八年级下册18.2 平行四边形的判定教学设计,共4页。教案主要包含了教学任务分析,教学过程设计,设计说明与反思等内容,欢迎下载使用。
初中华师大版18.2 平行四边形的判定教案: 这是一份初中华师大版18.2 平行四边形的判定教案,共1页。