华师大版八年级下册1. 矩形的性质教案
展开矩形的性质
一、教材分析
矩形是最为常见的平行四边形,本节教材先利用平行四边形活动木框进行演示,让学生以直观感知与操作确认为基础,通过适当的类比迁移,数学说理,分析矩形与平行四边形的联系与区别,揭示矩形的概念与所具有的性质。进而通过例题,练习题的分析与解答,让学生学会运用己得的矩形性质解决简单的推理与计算问题。本节教材注意强化对图形变换的理解,把矩形性质的形成、发展、应用的过程展现在学生面前,让学生通过动手实践、理性思考获得新知,给学生提供探索与交流的空间,培养学生提出问题、探究问题和解决问题的能力。
二、教学目标:
(一)知识目标: 掌握矩形的概念与有关性质,并会利用这些知识进行简单的推理与计算。
能力目标:在了解矩形与平行四边形之间的关系,掌握、运用矩形性质的过程中,渗透数形结合、转化化归与方程思想,进一步提高学生的分析问题与解决问题的能力。
情感目标:通过动手操作、观察比较、合作交流,激发学生的学习兴趣,让学生增强学习信心,体验探索与创造的快乐。
三、教学重点:
(一)矩形概念的理解;(二)掌握、运用矩形的性质。
四、教学难点:
(一)了解矩形与平行四边形的联系与区别。
(二)运用矩形的性质进行简单的推理与计算。
五、教学用具:
(一)学生:方格纸、小刀。
(二)教师:平行四边形活动木框、多媒体课件。
六、教学过程:
(一)复习引入
1.实物演示:展示平行四边形活动木框。
问题:它具有什么性质?
(平行四边形的性质:①中心对称图形;②两组对边平行且相等;③对角相等;④对角线互相平分)
2.推动平行四边形活动木框上边的D点
问题:你发现什么?(提问)
(1)木框随四个内角大小发生变动,但仍保持平行四边形形状。(为什么?)
(2)在推动过程中,当一个内角变为直角时,木框形状为特殊的平行四边形,即为小学已学过的长方形,现称为矩形。
(二)探究新知
1. 矩形与平行四边形的联系
由上面教学过程知:有一个角是直角的平行四边形是矩形。
2.矩形的性质
(1)矩形既然为特殊的平行四边形,则它必然是中心对称图形,故具备平行四边形的所有性质。
(2)问题:矩形除了上述的性质外,本身还有什么独有的性质呢?
①它是否为轴对称图形?
动手操作:(学生用课本后面方格纸画出并剪下矩形,发现它是轴对称图形,有两条对称轴,即两条通过对边中点的直线)
(学生操作,教师演示)
②通过折叠得到矩形独有性质:四个角是直角;对角线相等且互相平分。
(3)总结出矩形性质:①既是中心对称图形,又是轴对称图形;②两组
对边平行且相等;③四个角都为直角;③对角线相等且互相平分。
3.矩形性质的应用
(1)例题:(课本P100 练习1、例1改编题)
如图,在矩形ABCD中,AC与BD相交于O.
①在图中找出相等的线段与相等的角;
②若△AOB、△BOC、△OCD和△AOD四个小三角形的周长之和为86cm,AC的长为13cm,试求矩形的周长。
(先让学生独立探索,再教师引导,生生、师生合作交流)
(2)练习(课本P100例2 改编题)
如图,在矩形ABCD中,两邻边AB、BC之比为3:4,
矩形的周长为28.①求AC之长;②作BE⊥AC于E,试求BE之长。
(先让学生独立探索,再教师引导,生生、师生合作交流)
(三)课堂小结
1.矩形是如何从平行四边形演变而来的?
四边形、平行四边形、矩形的从属关系(出示投影片)
矩形
有一个角
四边形 两组对边分别平行 平行四边形
是直角
2.矩形的性质有哪些?
①既是中心对称图形,又是轴对称图形;②两组对边平行且相等;③四个角都为直角;④对角线相等且互相平分。
(先让学生研讨交流,尔后师生一齐归纳小结)
3. 矩形性质的应用。
(四)布置作业:
1.课本P101 练习1、2、3
(选作题):
如图,用8块相同的小矩形地砖拼成一个大矩形,若小矩形地砖两邻边之差为30cm,试求大矩形的周长。
数学八年级下册1. 矩形的性质教学设计: 这是一份数学八年级下册1. 矩形的性质教学设计,共12页。教案主要包含了教学内容,教材分析和学情分析,教学目标,授课类型,教学重点和教学难点,教学方法和教学准备,教学过程等内容,欢迎下载使用。
华师大版八年级下册1. 矩形的性质教案设计: 这是一份华师大版八年级下册1. 矩形的性质教案设计,共5页。教案主要包含了学习目标确定的依据等内容,欢迎下载使用。
初中数学华师大版八年级下册1. 矩形的性质教案及反思: 这是一份初中数学华师大版八年级下册1. 矩形的性质教案及反思,共4页。教案主要包含了教学目标,教学重难点,导学过程,知识回顾,情景导入,新知探究等内容,欢迎下载使用。