|教案下载
搜索
    上传资料 赚现金
    2021年沪科版七年级 数学下册 9.3 第1课时 分式方程及其解法 教案设计
    立即下载
    加入资料篮
    2021年沪科版七年级 数学下册 9.3 第1课时 分式方程及其解法 教案设计01
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版七年级下册9.3 分式方程第1课时教学设计

    展开
    这是一份初中数学沪科版七年级下册9.3 分式方程第1课时教学设计,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    第1课时 分式方程及其解法





    1.了解分式方程的概念;(重点)


    2.掌握可化为一元一次方程的分式方程的解法,知道转化的思想方法在解分式方程中的应用;(重点)


    3.了解增根的概念,会检验一个数是不是分式方程的增根,会根据增根求方程中字母的值.(难点)





    一、情境导入


    1.什么是方程?


    2.什么是一元一次方程?


    3.解一元一次方程的一般步骤是什么?


    我们今天将学习另外一种方程——分式方程.二、合作探究


    探究点一:分式方程的概念





    下列方程是分式方程的是( )


    A.eq \f(2,x+1)=eq \f(3,x-1)


    B.eq \f(2,3)x-1=eq \f(3,2)x+2


    C.eq \f(1,2)x2-x=1


    D.eq \f(2,x-3)


    解析:根据分式方程的定义,分母含有未知数的方程是分式方程,B,C选项是整式方程,D选项是分式,只有A选项分母含有未知数,并且是方程.故选A.


    方法总结:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数,如果分母中含有未知数就是分式方程,分母中不含未知数就不是分式方程.


    探究点二:分式方程的解法


    【类型一】 解分式方程


    解方程:


    (1)eq \f(5,x)=eq \f(7,x-2); (2)eq \f(1,x-2)=eq \f(1-x,2-x)-3.


    解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根.


    解:(1)方程两边同乘x(x-2),得5(x-2)=7x,5x-10=7x,2x=-10,解得x=-5.检验:把x=-5代入最简公分母,得x(x-2)≠0,∴x=-5是原方程的解;


    (2)方程两边同乘最简公分母(x-2),得1=x-1-3(x-2),解得x=2.检验:把x=2代入最简公分母,得x-2=0,∴原方程无解.


    方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.


    【类型二】 由分式方程的解确定字母的取值范围


    关于x的方程eq \f(2x+a,x-1)=1的解是正数,则a的取值范围是____________.


    解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程eq \f(2x+a,x-1)=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.


    方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.


    探究点三:分式方程的增根


    【类型一】 求分式方程的增根


    若方程eq \f(3,x-2)=eq \f(a,x)+eq \f(4,x(x-2))有增根,则增根可能为( )


    A.0 B.2 C.0或2 D.1


    解析:∵最简公分母是x(x-2),方程有增根,则x(x-2)=0,∴x=0或x=2.去分母得3x=a(x-2)+4,当x=0时,2a=4,a=2;当x=2时,6=4不成立,∴增根只能为x=0.故选A.


    方法总结:增根是使分式方程的分母为0的根.所以判断增根只需让分式方程的最简公分母为0;注意应舍去不合题意的解.


    【类型二】 分式方程有增根,求字母的值


    如果关于x的分式方程eq \f(2,x-3)=1-eq \f(m,x-3)有增根,则m的值为( )


    A.-3 B.-2


    C.-1 D.3


    解析:方程两边同乘以x-3,得2=x-3-m①.∵原方程有增根,∴x-3=0,即x=3.把x=3代入①,得m=-2.故选B.


    方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.


    【类型三】 分式方程无解,求字母的值


    若关于x的分式方程eq \f(2,x-2)+eq \f(mx,x2-4)=eq \f(3,x+2)无解,求m的值.


    解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.


    解:方程两边都乘以(x+2)(x-2)得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.


    方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.


    三、板书设计


    1.分式方程的概念


    2.分式方程的解法


    3.分式方程的增根





    这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错
    相关教案

    初中数学第9章 分式9.3 分式方程教案设计: 这是一份初中数学第9章 分式9.3 分式方程教案设计,共2页。

    沪科版七年级下册第9章 分式9.3 分式方程教案: 这是一份沪科版七年级下册第9章 分式9.3 分式方程教案,共2页。

    数学人教版15.3 分式方程第1课时教学设计及反思: 这是一份数学人教版15.3 分式方程第1课时教学设计及反思,共2页。教案主要包含了教学目标,教学重点和难点,教学过程,教学反思等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021年沪科版七年级 数学下册 9.3 第1课时 分式方程及其解法 教案设计
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map