|教案下载
搜索
    上传资料 赚现金
    2021年北师大版九年级数学下册 3.7 切线长定理1 教案设计
    立即下载
    加入资料篮
    2021年北师大版九年级数学下册 3.7 切线长定理1  教案设计01
    2021年北师大版九年级数学下册 3.7 切线长定理1  教案设计02
    还剩2页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载
    成套系列资料,整套一键下载

    初中数学北师大版九年级下册第三章 圆7 切线长定理教案

    展开
    这是一份初中数学北师大版九年级下册第三章 圆7 切线长定理教案,共4页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。










    1.理解切线长的定义;(重点)


    2.掌握切线长定理并能运用切线长定理解决问题.(难点)





    一、情境导入


    如图①,PA为⊙O的一条切线,点A为切点.如图②所示,沿着直线PO将纸对折,由于直线PO经过圆心O,所以PO是圆的一条对称轴,两半圆重合.设与点A重合的点为点B,这里,OB是⊙O的一条半径,PB是⊙O的一条切线.图中PA与PB、∠APO与∠BPO有什么关系?





    二、合作探究


    探究点:切线长定理


    【类型一】 利用切线长定理求线段的长


    如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是点A和点B,如果∠APB=60°,线段PA=10,那么弦AB的长是( )





    A.10


    B.12


    C.5eq \r(3)


    D.10eq \r(3)


    解析:∵PA、PB都是⊙O的切线,∴PA=PB.∵∠APB=60°,∴△PAB是等边三角形,∴AB=PA=10.故选A.


    方法总结:切线长定理是在圆中判断线段相等的主要依据,经常用到.


    变式训练:见《学练优》本课时练习“课堂达标训练”第4题


    【类型二】 利用切线长定理求角的度数


    如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠ACB=70°,那么∠OPA的度数是________度.





    解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB=360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.易证△POA≌△POB,∴∠OPA=eq \f(1,2)∠APB=20°.故答案为20.


    方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.


    变式训练:见《学练优》本课时练习“课堂达标训练”第3题


    【类型三】 利用切线长定理求三角形的周长


    如图,PA、PB、DE是⊙O的切线,切点分别为A、B、F,已知PO=13cm,⊙O的半径为5cm,求△PDE的周长.





    解析:连接OA,根据切线的性质定理,得OA⊥PA.根据勾股定理,得PA=12,再根据切线长定理即可求得△PDE的周长.


    解:连接OA,则OA⊥PA.在Rt△APO中,PO=13cm,OA=5cm,根据勾股定理,得AP=12cm.∵PA、PB、DE是⊙O的切线,∴PA=PB,DA=DF,EF=EB,∴△PDE的周长PD+DE+PE=PD+DF+FE+PE=PD+DA+EB+PE=PA+PB=2PA=24cm.


    方法总结:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.


    变式训练:见《学练优》本课时练习“课后巩固提升”第4题


    【类型四】 利用切线长定理解决圆外切四边形的问题





    如图,四边形ABCD的边与圆O分别相切于点E、F、G、H,判断AB、BC、CD、DA之间有怎样的数量关系,并说明理由.


    解析:直接利用切线长定理解答即可.


    解:AD+BC=CD+AB,理由如下:∵四边形ABCD的边与圆O分别相切于点E、F、G、H,∴DH=DG,CG=CF,BE=BF,AE=AH,∴AH+DH+CF+BF=DG+GC+AE+BE,即AD+BC=CD+AB.


    方法总结:由切线长定理可以得到一些相等的线段,一定要明确这些相等线段.记住“圆外切四边形的对边之和相等”,对我们以后解决问题有很大帮助.


    变式训练:见《学练优》本课时练习“课堂达标训练”第4题


    【类型五】 切线长定理与三角形内切圆的综合


    如图,在△ABC中,AB=AC,⊙O是△ABC的内切圆,它与AB、BC、CA分别相切于点D、E、F.


    (1)求证:BE=CE;


    (2)若∠A=90°,AB=AC=2,求⊙O的半径.





    解析:(1)利用切线长定理得出AD=AF,BD=BE,CE=CF,进而得出BD=CF,即可得出答案;


    (2)首先连接OD、OE、OF,进而利用切线的性质得出∠ODA=∠OFA=∠A=90°,进而得出四边形ODAF是正方形,再利用勾股定理求出⊙O的半径.


    (1)证明:∵⊙O是△ABC的内切圆,∴AD=AF,BD=BE,CE=CF.∵AB=AC,∴AB-AD=AC-AF,即BD=CF,∴BE=CE;


    (2)解:连接OD、OE、OF,∵⊙O是△ABC的内切圆,切点为D、E、F,∴∠ODA=∠OFA=∠A=90°.又∵OD=OF,∴四边形ODAF是正方形.设OD=AD=AF=r,则BE=BD=CF=CE=2-r.在△ABC中,∠A=90°,∴BC=eq \r(AB2+AC2)=2eq \r(2).又∵BC=BE+CE,∴(2-r)+(2-r)=2eq \r(2),得r=2-eq \r(2),∴⊙O的半径是2-eq \r(2) .


    方法总结:本题综合考查了正方形的判定以及切线长定理和勾股定理等知识,解决问题的关键是得出四边形ODAF是正方形.


    【类型六】 利用切线长定理解决存在性问题


    如图①,已知正方形ABCD的边长为2eq \r(3),点M是AD的中点,P是线段MD上的一动点(P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E.


    (1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线)?


    (2)求四边形CDPF的周长;


    (3)延长CD,FP相交于点G,如图②所示.是否存在点P,使BF·FG=CF·OF?如果存在,试求此时AP的长;如果不存在,请说明理由.





    解析:(1)根据切线长定理得到FB=FE,PE=PA;(2)根据切线长定理,发现该四边形的周长等于正方形的三边之和;(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.


    解:(1)FB=FE,PE=PA;


    (2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=2eq \r(3)×3=6eq \r(3);


    (3)假设存在点P,使BF·FG=CF·OF.∴eq \f(BF,OF)=eq \f(CF,FG).∵cs∠OFB=eq \f(BF,OF),cs∠GFC=eq \f(CF,FG),∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=eq \f(OB,tan∠OFB)=eq \f(OB,tan60°)=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(2eq \r(3)-1)×eq \r(3)=6-eq \r(3),∴DG=CG-CD=6-3eq \r(3),∴DP=DG·tan∠PGD=DG·tan30°=2eq \r(3)-3,∴AP=AD-DP=2eq \r(3)-(2eq \r(3)-3)=3.


    方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.


    三、板书设计


    切线长定理


    1.切线长的概念


    2.切线长定理


    3.切线长定理的应用





    在教学过程中,通过安排实践操作活动,使学生提高了探究的兴趣.首先教师突出操作要求,学生操作并思考回答问题,教师在学生回答问题的基础上进一步引导学生从中发现问题,让学生体会从具体情景和实践操作中发现问题,解决问题.通过设计问题情境,使学生提高解决问题的意识,通过自己画图尝试从中得到感性认识,进而不断地比较,让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙向严格、精确,使学生体会数学发展的过程.
    相关教案

    初中数学北师大版九年级下册7 切线长定理教案设计: 这是一份初中数学北师大版九年级下册<a href="/sx/tb_c102702_t8/?tag_id=27" target="_blank">7 切线长定理教案设计</a>,共6页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。

    九年级下册7 切线长定理教学设计: 这是一份九年级下册7 切线长定理教学设计,共6页。

    初中数学北师大版九年级下册7 切线长定理教学设计: 这是一份初中数学北师大版九年级下册7 切线长定理教学设计,共6页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021年北师大版九年级数学下册 3.7 切线长定理1 教案设计
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map