- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第05章 第1讲 任意角和弧度制及任意角的三角函数 课件 12 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第05章 第7讲 解三角形应用举例及综合问题 课件 11 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案)第6章 阅读与欣赏(五) 求解平面向量问题的五大策略 课件 11 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第06章 第3讲 平面向量的数量积及应用举例 课件 12 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第06章 第1讲 平面向量的概念及线性运算 课件 11 次下载
2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第05章 第2讲 同角三角函数的基本关系与诱导公式
展开[基础题组练]
1.计算:sin +cos =( )
A.-1 B.1
C.0 D.-
解析:选A.原式=sin+cos=-sin +cos=--cos =--=-1.
2.(多选)(2021·预测)若角A,B,C是△ABC的三个内角,则下列等式中一定成立的是( )
A.cos(A+B)=cos C B.sin(A+B)=-sin C
C.cos=sin D.sin=cos
解析:选CD.因为A+B+C=π,所以A+B=π-C,=,=,所以cos(A+B)=cos(π-C)=-cos C,sin(A+B)=sin(π-C)=sin C,cos=cos=sin ,sin=sin=cos.
3.已知sin(π+θ)=-cos(2π-θ),|θ|<,则θ等于( )
A.- B.-
C. D.
解析:选D.因为sin(π+θ)=-cos(2π-θ),
所以-sin θ=-cos θ,
所以tan θ=,因为|θ|<,所以θ=.
4.已知f(α)=,则f=( )
A. B.
C. D.-
解析:选A.f(α)====cos α,则f=cos=.
5.已知sin α+cos α=,则tan α+的值为( )
A.-1 B.-2
C. D.2
解析:选D.因为sin α+cos α=,所以(sin α+cos α)2=2,所以sin αcos α=.所以tan α+=+==2.故选D.
6.设α是第三象限角,tan α=,则cos(π-α)=________.
解析:因为α为第三象限角,tan α=,
所以cos α=-,
所以cos(π-α)=-cos α=.
答案:
7.已知sincos=,且0<α<,则sin α=________,cos α=________.
解析:sincos=-cos α·(-sin α)=sin αcos α=.
因为0<α<,所以0<sin α<cos α.
又因为sin2α+cos2α=1,所以sin α=,cos α=.
答案:
8.化简=________.
解析:原式=
=
=
=
=1.
答案:1
9.已知α为第三象限角,
f(α)=.
(1)化简f(α);
(2)若cos(α-)=,求f(α)的值.
解:(1)f(α)=
==-cos α.
(2)因为cos(α-)=,
所以-sin α=,
从而sin α=-.
又α为第三象限角,
所以cos α=-=-,
所以f(α)=-cos α=.
10.是否存在α∈,β∈使等式sin(3π-α)=cos,cos(-α)=-cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.
解:假设存在角α,β满足条件.
由已知条件可得
由①2+②2,得sin2α+3cos2α=2.
所以sin2α=,所以sin α=±.
因为α∈,所以α=±.
当α=时,由②式知cos β=,
又β∈(0,π),所以β=,此时①式成立;
当α=-时,由②式知cos β=,又β∈(0,π),
所以β=,此时①式不成立,故舍去.
所以存在α=,β=满足条件.
[综合题组练]
1.已知θ为直线y=3x-5的倾斜角,若A(cos θ,sin θ),B(2cos θ+sin θ,5cos θ-sin θ),则直线AB的斜率为( )
A.3 B.-4
C. D.-
解析:选D.由题意知tan θ=3,kAB===-.故选D.
2.A={sin α,cos α,1},B={sin2α,sin α+cos α,0},且A=B,则sin2 019α+cos2 018α=( )
A.0 B.1
C.-1 D.±1
解析:选C.当sin α=0时,sin2α=0,此时集合B中不符合集合元素的互异性,故舍去;当cos α=0时,A={sin α,0,1},B={sin2α,sin α,0},此时sin2α=1,得sin α=-1,所以sin2 019α+cos2 018α=-1.
3.若|sin θ|+|cos θ|=,则sin4θ+cos4θ=________.
解析:|sin θ|+|cos θ|=,两边平方得,1+|sin 2θ|=,所以|sin 2θ|=,所以sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-2sin2θcos2θ=1-sin2 2θ=1-×=.
答案:
4.若k∈Z时,的值为________.
解析:当k为奇数时,
==-1;
当k为偶数时,
==-1.
答案:-1
5.已知关于x的方程2x2-(+1)x+m=0的两根分别是sin θ和cos θ,θ∈(0,2π),求:
(1)+的值;
(2)m的值;
(3)方程的两根及此时θ的值.
解:(1)原式=+
=+
==sin θ+cos θ.
由条件知sin θ+cos θ=,
故+=.
(2)由已知,得sin θ+cos θ=,
sin θcos θ=,
又1+2sin θcos θ=(sin θ+cos θ)2,可得m=.
(3)由
得或
又θ∈(0,2π),故θ=或θ=.
6.在△ABC中,
(1)求证:cos2+cos2 =1;
(2)若cossintan(C-π)<0,
求证:△ABC为钝角三角形.
证明:(1)在△ABC中,A+B=π-C,
所以=-,
所以cos=cos=sin ,
所以cos2+cos2=1.
(2)若cossintan(C-π)<0,
所以(-sin A)(-cos B)tan C<0,
即sin Acos Btan C<0.
因为在△ABC中,0<A<π,0<B<π,0<C<π且sin A>0,
所以或
所以B为钝角或C为钝角,所以△ABC为钝角三角形.