- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第7讲 抛物线 课件 14 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第1讲 直线的倾斜角与斜率、直线方程 课件 14 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第2讲 两直线的位置关系 课件 13 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第5讲 第2课时 直线与椭圆 课件 15 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第3讲 圆的方程 课件 14 次下载
2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第8讲 第2课时 圆锥曲线中的定值、定点与存在性问题
展开[基础题组练]
1.直线l与抛物线C:y2=2x交于A,B两点,O为坐标原点,若直线OA,OB的斜率分别为k1,k2,且满足k1k2=,则直线l过定点( )
A.(-3,0) B.(0,-3)
C.(3,0) D.(0,3)
解析:选A.设A(x1,y1),B(x2,y2),因为k1k2=,所以·=.又y=2x1,y=2x2,所以y1y2=6.将直线l:x=my+b代入抛物线C:y2=2x得y2-2my-2b=0,所以y1y2=-2b=6,得b=-3,即直线l的方程为x=my-3,所以直线l过定点(-3,0).
2.以下四个关于圆锥曲线的命题:
①设A,B为两个定点,K为正数,若||PA|-|PB||=K,则动点P的轨迹是双曲线;
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
③双曲线-=1与椭圆+y2=1有相同的焦点;
④已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切.
其中真命题为________.(写出所有真命题的序号)
解析:A,B为两个定点,K为正数,||PA|-|PB||=K,当K=|AB|时,动点P的轨迹是两条射线,故①错误;
方程2x2-5x+2=0的两根为和2,可分别作为椭圆和双曲线的离心率,故②正确;
双曲线-=1的焦点坐标为(±,0),椭圆+y2=1的焦点坐标为(±,0),故③正确;
设AB为过抛物线焦点F的弦,P为AB中点,A,B,P在准线l上的射影分别为M,N,Q,
因为AP+BP=AM+BN,所以PQ=AB,
所以以AB为直径作圆,则此圆与准线l相切,故④正确.
故正确的命题有②③④.
答案:②③④
3.(2020·福建五校第二次联考)已知椭圆C:+=1(a>b>0)的离心率为,上顶点M到直线x+y+4=0的距离为3.
(1)求椭圆C的方程;
(2)设直线l过点(4,-2),且与椭圆C相交于A,B两点,l不经过点M,证明:直线MA的斜率与直线MB的斜率之和为定值.
解:(1)由题意可得,解得
所以椭圆C的方程为+=1.
(2)证明:易知直线l的斜率恒小于0,设直线l的方程为y+2=k(x-4),k<0且k≠-1,A(x1,y1),B(x2,y2),
联立
得(1+4k2)x2-16k(2k+1)x+64k(k+1)=0,
则x1+x2=,x1x2=,
因为kMA+kMB=+
=,
所以kMA+kMB=2k-(4k+4)×=2k-4(k+1)×
=2k-(2k+1)=-1(为定值).
4.(2019·高考全国卷Ⅲ)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.
(1)证明:直线AB过定点;
(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.
解:(1)证明:设D,A(x1,y1),则x=2y1.
由于y′=x,所以切线DA的斜率为x1,故=x1.
整理得2tx1-2y1+1=0.
设B(x2,y2),同理可得2tx2-2y2+1=0.
故直线AB的方程为2tx-2y+1=0.
所以直线AB过定点.
(2)由(1)得直线AB的方程为y=tx+.由可得x2-2tx-1=0.于是x1+x2=2t,y1+y2=t(x1+x2)+1=2t2+1.
设M为线段AB的中点,则M.
由于⊥,而=(t,t2-2),与向量(1,t)平行,所以t+(t2-2)t=0.
解得t=0或t=±1.
当t=0时,||=2,所求圆的方程为x2+=4;
当t=±1时,||=,所求圆的方程为x2+=2.
[综合题组练]
1.(2020·广州市调研测试)已知动圆C过定点F(1,0),且与定直线x=-1相切.
(1)求动圆圆心C的轨迹E的方程;
(2)过点M(-2,0)的任一条直线l与轨迹E交于不同的两点P,Q,试探究在x轴上是否存在定点N(异于点M),使得∠QNM+∠PNM=π?若存在,求点N的坐标;若不存在,请说明理由.
解:(1)法一:依题意知,动圆圆心C到定点F(1,0)的距离,与到定直线x=-1的距离相等,
由抛物线的定义,可得动圆圆心C的轨迹E是以F(1,0)为焦点,x=-1为准线的抛物线,其中p=2.
所以动圆圆心C的轨迹E的方程为y2=4x.
法二:设动圆圆心C(x,y),依题意得=|x+1|,
化简得y2=4x,即为动圆圆心C的轨迹E的方程.
(2)假设存在点N(x0,0)满足题设条件.
由∠QNM+∠PNM=π可知,直线PN与QN的斜率互为相反数,即kPN+kQN=0.①
易知直线PQ的斜率必存在且不为0,设直线PQ:x=my-2,
由得y2-4my+8=0.
由Δ=(-4m)2-4×8>0,得m>或m<-.
设P(x1,y1),Q(x2,y2),则y1+y2=4m,y1y2=8.
由①得kPN+kQN=+
==0,
所以y1(x2-x0)+y2(x1-x0)=0即,y1x2+y2x1-x0(y1+y2)=0.
消去x1,x2,得y1y+y2y-x0(y1+y2)=0,
即y1y2(y1+y2)-x0(y1+y2)=0.
因为y1+y2≠0,所以x0=y1y2=2,
所以存在点N(2,0),使得∠QNM+∠PNM=π.
2.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),点A在椭圆C上.
(1)求椭圆C的标准方程;
(2)是否存在斜率为2的直线,使得当直线与椭圆C有两个不同交点M,N时,能在直线y=上找到一点P,在椭圆C上找到一点Q,满足=?若存在,求出直线的方程;若不存在,说明理由.
解:(1)设椭圆C的焦距为2c,则c=1,
因为A在椭圆C上,
所以2a=|AF1|+|AF2|=2,
所以a=,b2=a2-c2=1,
所以椭圆C的方程为+y2=1.
(2)不存在满足条件的直线,证明如下:
设直线的方程为y=2x+t,
设M(x1,y1),N(x2,y2),P,Q(x4,y4),MN的中点为D(x0,y0),
由消去x,
得9y2-2ty+t2-8=0,
所以y1+y2=,Δ=4t2-36(t2-8)>0,
所以y0==,且-3<t<3.
由=得=(x4-x2,y4-y2),
所以y1-=y4-y2,y4=y1+y2-=t-,
又-3<t<3,所以-<y4<-1,
与椭圆上点的纵坐标的取值范围是[-1,1]矛盾.
所以不存在满足条件的直线.