|试卷下载
搜索
    上传资料 赚现金
    人教版九年级上册第24章《圆》单元检测试题 含答案
    立即下载
    加入资料篮
    人教版九年级上册第24章《圆》单元检测试题  含答案01
    人教版九年级上册第24章《圆》单元检测试题  含答案02
    人教版九年级上册第24章《圆》单元检测试题  含答案03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中人教版第二十四章 圆综合与测试精品课时练习

    展开
    这是一份初中人教版第二十四章 圆综合与测试精品课时练习,共17页。试卷主要包含了选择题,填空题,解答题,连接OE.等内容,欢迎下载使用。

    满分120分 时间100分钟


    班级__________姓名__________学号__________成绩__________


    一、选择题(满分30分)


    1.已知,⊙O的半径为5cm,点P到圆心O的距离为4cm,则点P在⊙O的( )


    A.外部 B.内部 C.圆上 D.不能确定


    2.下列说法正确的是( )


    A.半圆是弧,弧也是半圆B.三点确定一个圆


    C.平分弦的直径垂直于弦D.直径是同一圆中最长的弦


    3.已知某直线到圆心的距离为,圆的周长为,请问这条直线与这个圆的公共点的个数为( )


    A.0B.1C.2D.无法确定


    4. 如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是( )





    A.20°B.30°C.40°D.70°


    5.如图,CD为圆O的直径,弦AB⊥CD,垂足为E,CE=1,半径为25,则弦AB的长为( )





    A.24B.14C.10D.7


    6.已知圆锥的底面周长为,高为4cm,则它的侧面展开图的圆心角是


    A.B.C.D.


    7.下列四个命题:


    ①等边三角形是中心对称图形;


    ②在同圆或等圆中,相等的弦所对的圆周角相等;


    ③三角形有且只有一个外接圆;


    ④垂直于弦的直径平分弦所对的两条弧.


    其中真命题的个数有( )


    A.1个 B.2个 C.3个 D.4个


    8.如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆心M的坐标为( )





    A.(﹣4,5)B.(﹣5,4)


    C.(5,﹣4)D.(4,﹣5)


    9.如图,Rt△AB′C′是Rt△ABC以点A为中心逆时针旋转90°而得到的,其中AB=1,BC=2,则旋转过程中弧CC′的长为( )





    A.B.C.5πD.π


    10.如图,与相切于点,若,则的度数为( )





    A.B.C.D.








    二、填空题(满分24分)


    11.在半径为6cm的圆中,120°的圆心角所对的弧长为_____cm.


    12.如图,AB是⊙O的直径,点C在⊙O上,若⊙O半径为3,AC长为2,则BC=_____.





    13.如图,A、B、C、D均在⊙O上,E为BC延长线上一点,若∠A=102°,则∠DCE=___________.





    14.的圆心是原点,半径为5,点在上,如果点在第一象限内,那么______.


    15.如图,有一座石拱桥,上部拱顶部分是圆弧形,跨度BC=10m,拱高为(10﹣5)m,那么弧BC所在圆的半径等于_____.





    16.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是_____.








    三、解答题(满分66分)


    17.(6分)已知:如图,四边形ABCD的顶点都在⊙O上,BD平分∠ADC,且BC=CD.求证: AB=CD.








    18.(8分)如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,直线为⊙P的切线.


    ⑴ 试说明:2∠B+∠DAB=180°


    ⑵ 若∠B=30°,AD=2,求⊙P的半径.











    19.(8分)如图,在⊙O中,点P为直径BA延长线上一点,PD切⊙O于点D、过点B作BH⊥PH,点H为垂足,BH交⊙O于点C,连接BD,CD.


    (1)求证:BD平分∠ABH;


    (2)若CD=2,∠ABD=30°,求⊙O的直径的长.











    20.(10分)如图,BC是⊙O的直径,AB是⊙O的弦,半径OF∥AC交AB于点E.


    (1)求证:;


    (2)若AB=6,EF=3.求半径OB的长.








    21.(10分)在ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.


    (1)求圆心O到CD的距离;





    (2)求由弧AE,线段AD,DE所围成的阴影部分的面积.(结果保留π和根号)














    22.(12分)如图,,点是线段的一个三等分点,以点为圆心,为半径的圆交于点,交于点,连接





    (1)求证:是的切线;


    (2)点为上的一动点,连接.


    ①当 时,四边形是菱形;


    ②当 时,四边形是矩形.























    23. (12分)若一个四边形的两条对角线互相垂直且相等,则称这个四边形为奇妙四边形.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据奇妙四边形对角线互相垂直的特征可得奇妙四边形的一个重要性质:奇妙四边形的面积等于两条对角线乘积的一半.根据以上信息回答:





    (1)矩形 奇妙四边形(填“是”或“不是”);


    (2)如图2,已知⊙O的内接四边形ABCD是奇妙四边形,若⊙O的半径为6,∠ BCD=60°.求奇妙四边形ABCD的面积;


    (3)如图3,已知⊙O的内接四边形ABCD是奇妙四边形作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.










































































    参考答案


    一、选择题


    1.B


    2.D


    3.B


    4.A


    5.B


    6.C


    7.B


    8.A


    9.A


    10.A


    二、填空题


    11.4π


    12.4


    13.102°


    14.4


    15.10


    16.2﹣


    解答题


    17.解:∵BD平分∠ADC,


    ∴∠ADB=∠CDB,


    ∴,


    ∴AB=BC,


    ∵BC=CD,


    ∴AB=CD.


    18.解:⑴ 连接CP





    ∵PC=PB,∴∠B=∠PCB,


    ∴∠APC=∠PCB+∠B=2∠B


    ∵CD是⊙OP的切线,∴∠DCP=90°


    ∵∠ADC=90°,∴∠DAB+∠APC=180°


    ∴2∠B+∠DAB=180°


    ⑵ 连接AC


    ∵∠B=30°,∴∠APC=60°,


    ∵PC=PA,∴△ACP是等边三角形,∴AC=PA,∠ACP=60°


    ∴∠ACD=30°,∴AC=2AD=4,∴PA=4


    答:⊙P的半径为4.


    19.(1)证明:∵PD切⊙O于点D,


    ∴OD⊥PH,


    ∵BH⊥PH,


    ∴BH∥OD,


    ∴∠2=∠3,


    ∵OD=OB,


    ∴∠1=∠3,


    ∴∠1=∠2,


    ∴BD平分∠ABH;


    (2)解:连接OC,如图,





    ∵∠1=30°,


    ∴∠2=∠3=30°,


    ∴∠OBC=60°,


    ∴△OCB为等边三角形,


    ∴∠BOC=60°,


    ∵BC∥OD,


    ∴∠BOD=180°﹣∠OBC=120°,


    ∴∠DOC=60°,


    而OC=OD,


    ∴△OCD为等边三角形,


    ∴OD=CD=2,


    ∴⊙O的直径的长为4.


    20.(1)证明:∵AB是直径,


    ∴∠A=90°,


    ∵OF∥AC,


    ∴∠OEB=∠A=90°,


    ∴OF⊥AB,


    ∴;


    (2)设OB=r,


    ∵OF⊥AB,


    ∴AE=EB=,


    在Rt△OBE中,∵OB2=OE2+EB2,


    ∴r2=(r﹣3)2+()2,


    ∴r=6,即OB=6.


    21.解:(1)、连接OE.


    ∵边CD切⊙O于点E.∴OE⊥CD 则OE就是圆心O到CD的距离,则圆心O到CD的距离是12×AB=5.





    (2)∵四边形ABCD是平行四边形. ∴∠C=∠DAB=180°-∠ABC=120°,


    ∴∠BOE=360°-90°-60°-120°=90°, ∴∠AOE=90°,


    作EF∥CB,∴∠OFE=∠ABC=60°, 在直角三角形OEF中,OE=5,


    ∴EC=BF=5-533. 则DE=10-5+533=5+533,


    则直角梯形OADE的面积是:12(OA+DE)×OE=12(5+5+533)×5=25+2563.


    扇形OAE的面积是:90π×52360=254π. 则阴影部分的面积是:25+2563-254π.


    22.证明:连接,








    .





    为等边三角形,


    .


    点是的三等分点,








    ,即,


    是的切线.


    (2)①当时,四边形是菱形;


    如图,连接BD,





    ∵,


    ∴,


    ∴,


    ∵AB为直径,则∠AEB=90°,


    由(1)知,


    ∴,


    ∴,


    ∴PE//DB,


    ∵,,


    ∴,


    ∴四边形是菱形;


    故答案为:60°.


    ②当时,四边形是矩形.


    如图,连接AE、AD、DB,





    ∵,


    ∴,


    ∴,


    ∵AB是直径,


    ∴,


    ∴四边形是矩形.


    故答案为:.


    23.解:(1)矩形的对角线相等但不垂直,


    所以矩形不是奇妙四边形;


    故答案为不是;


    (2)





    连结OB、OD,作OH⊥BD于H,如图2,则BH=DH,


    ∵∠BOD=2∠BCD=2×60°=120°,


    ∴在等腰△OBD中,∠OBD=30°,


    在Rt△OBH中,∵∠OBH=30°,


    ∴,








    ∵四边形ABCD是奇妙四边形,


    ∴,


    ∴;


    (3).


    理由如下:





    连结OB、OC、OA、OD,作OE⊥AD于E,如图3,


    ∵OE⊥AD,


    ∴在等腰△AOD中,,


    又∵,


    ∴∠BOM=∠BAC,


    同理可得∠AOE=∠ABD,


    ∵BD⊥AC,


    ∴∠BAC+∠ABD=90°,


    ∴∠BOM+∠AOE=90°,


    ∵∠BOM+∠OBM=90°,


    ∴∠OBM=∠AOE,


    在△BOM和△OAE中





    ∴,


    ∴OM=AE,


    相关试卷

    数学九年级上册24.1.1 圆练习: 这是一份数学九年级上册24.1.1 圆练习,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    人教版九年级上册24.1.1 圆课后测评: 这是一份人教版九年级上册24.1.1 圆课后测评,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    数学九年级上册24.1.1 圆测试题: 这是一份数学九年级上册24.1.1 圆测试题,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map