搜索
    上传资料 赚现金
    英语朗读宝

    数学人教版七年级上册期末专题复习07:第四章几何图形初步(基础卷)

    数学人教版七年级上册期末专题复习07:第四章几何图形初步(基础卷)第1页
    数学人教版七年级上册期末专题复习07:第四章几何图形初步(基础卷)第2页
    数学人教版七年级上册期末专题复习07:第四章几何图形初步(基础卷)第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版七年级上册第四章 几何图形初步综合与测试优秀课后作业题

    展开

    这是一份人教版七年级上册第四章 几何图形初步综合与测试优秀课后作业题,共13页。
    专题07 第四章几何图形初步(基础卷)


    (测试时间:60分钟 试卷总分:120分)


    班级:________ 姓名:________ 得分:________


    一、选择题(每小题3分,共30分)


    1.如图,直线a,b相交于点O,若∠1等于40°,则∠2等于( )


    A.50° B.60° C.140° D.160°





    第1题图 第4题图 第5题图


    2.下列四个图形中,能用∠1、∠AOB.∠O三种方法表示同一个角的图形是( )


    A. B. C. D.


    3.下列说法正确的是( )


    A.棱柱的各条棱都相等 B.有9条棱的棱柱的底面一定是三角形


    C.长方体和正方体不是棱柱 D.柱体的上、下两底面可以大小不一样


    4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于( )


    A.30°10′ B.60°10′ C.59°50′ D.60°50′


    5.如图,C.D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为( )


    A.2cm B.3cm C.4cm D. 6cm


    6.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( )





    A. B. C. D.


    7.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线旋转一周得到的( )





    A. B. C. D.


    8.如果所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为( )


    ①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.


    A.1 B.2 C.3 D.4





    第8题图 第9题图 第10题图


    9.如图所示的正立方体的展开图的是( )


    A.B.C. D.


    10.将棱长是1cm的小正方体组成如图所示的几何体,那么这个几何体的表面积是( )


    A.36cm2 B.33cm2 C.30cm2 D.27cm2


    二、填空题(每小题3分,共30分)


    11.若一直棱柱有10个顶点,那么它共有 条棱.


    12.已知∠α=34°,则∠α的补角为 °.


    13.如图,点O是直线AB上一点,OC是∠AOD的平分线,已知∠AOC的补角是150°20′,则∠AOD的度数是 .





    第13题图 第14题图 第15题图


    14.能展开成如图所示的几何体名称是 .


    15.如图,该图中不同的线段数共有 条.


    16.如图,OA的方向是北偏东15°,OB的方向是北偏西40°,若∠AOC=∠AOB,则OC的方向是 .





    第16题图 第19题图 第20题图


    17.已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC= cm.


    18.=______度______分______秒.


    19.如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3cm,则BC= .


    20.如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC=63°,则∠AOD= .


    三、解答题(共60分)


    21.(6分)如图所示由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.





    从正面看 从左面看 从上面看


    22.(6分)如图,已知AB=2cm,延长线段AB至点C,使BC=2AB,点D是线段AC的中点,用刻度尺画出图形,并求线段BD的长度.

















    23.(6分)如图,已知O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.


    (1)写出图中互补的角;


    (2)求∠DOE的度数.





    24.(6分)如图,C是线段AB上的一点,AC=16cm,CB=AC,D.E分别是线段AC.AB的中点,求线段DE的长.




















    25.(8分)已知:如图,B.C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD的中点,CD=6cm,求线段MC的长.




















    26.(8分)如图,直线AB与CD相交于点O,.


    (1)如图1,若OC平分,求的度数;


    (2)如图2,若,且OM平分,求的度数.





    图1 图2


























    27.(10分)如图,线段 AB上的点数与线段的总数有如下关系:如果线段上有3个点时,线段共有3条;如果线段上有4个点时,线段共有6条;如果线段上有5个点时,线段共有10条;


    ​(1)当线段上有6个点时,线段共有 条?


    (2)当线段上有n个点时,线段共有多少条?(用n的代数式表示)


    (3)当n=100时,线段共有多少条?











    28.(10分)如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.




















    参考答案


    C


    B


    3.B


    【解析】根据各图立体图形的形状可以判断:


    A.棱柱的各条棱不一定相等,故此说法错误;


    B.棱锥的侧面是三角形,此说法正确;


    C.长方体与正方体是棱柱,此说法不正确;


    D.棱柱的上、下两底面是完全重合的多边形,此说法不正确.


    故选:B.


    4.C


    【解析】根据平角的意义可求∠1=180°-90°-∠2=59°50′.


    故选C


    5.B


    【解析】因为AB=10cm,BC=4cm,所以AC=AB-BC=10-4=6cm,又因为点D是线段AC的中点,所以cm,故选:B.


    6.B


    【解析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.


    解:严格按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到结论.


    故选:B.


    7.A


    【解析】A.可以通过旋转得到两个圆柱,故本选项正确;


    B.可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;


    C.可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;


    D.可以通过旋转得到三个圆柱,故本选项错误.


    8.B


    【解析】根据角平分线的定义进行判断即可.


    解:AD不一定平分∠BAF,①错误;


    AF不一定平分∠DAC,②错误;


    ∵∠1=∠2,∴AE平分∠DAF,③正确;


    ∵∠1=∠2,∠3=∠4,


    ∴∠1+∠3=∠2+∠4,即∠BAE=∠CAE,


    ∴AE平分∠BAC,④正确;


    故选:B.


    9.C


    【解析】观察正立方体的展开图中,图案的位置关系可知:选项A中折叠后图形的位置不符,选项B折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项D不能折叠成正立方体,所以正确的是C.故选:C.


    10.A


    【解析】因为从上、下、左、右、前、后六个不同的方向都可以看到六个小正方形,所以这个几何体的表面积是36个小正方形的面积=36cm2.故选:A.


    11.15.


    【解析】若这个直棱柱有10个顶点,则它是五棱柱,上下两个底面共有10条棱,侧面有5条棱,所以共有15条棱.故答案为15.


    12.146


    【解析】直接利用互补两角的定义得出答案.


    解:∵∠α=34°,


    ∴∠α的补角为:146°.


    故答案为:146.


    13.59°20′


    【解析】先根据补角的定义求得∠AOC的度数,然后由角平分线的定义可知∠AOD=2∠AOC,从而可求得∠AOD的度数.


    解:∵∠AOC的补角是150°20′,


    ∴∠AOC=180°﹣150°20′=29°40′.


    ∵OC是∠AOD的平分线,


    ∴∠AOD=2∠AOC=2×29°40′=59°20′.


    故答案为:59°20′.


    14.三棱柱.


    【解析】由图可得,该几何体有两个底面,3个侧面,折叠后围成的几何体是三棱柱.


    15.6


    【解析】根据图形数出线段的条数即可,注意不要重复和漏数.


    解:线段AB,线段AD,线段BC,线段DC,线段AC,线段BD,共6条,


    故答案为:6.


    16.70°


    【解析】先求出∠AOB=55°,再求得OC的方位角,从而确定方位.


    解:∵OA的方向是北偏东15°,OB的方向是北偏西40°


    ∴∠AOB=40°+15°=55°


    ∵∠AOC=∠AOB


    ∴OC的方向是北偏东15°+55°=70°.


    17.6或14.


    【解析】分点C在线段AB上和点C在线段AB的延长线上两种情况,结合图形计算即可.


    解:当点C在线段AB上时,AC=AB﹣BC=6cm,


    当点C在线段AB的延长线上时,AC=AB+BC=14cm,


    故答案为:6或14.





    18.3,45,36.


    【解析】∵0.76°×60′=45.6′,0.6′×60=36″,∴3.76=3°45′36″.


    故答案为:3,45,36.





    【解析】由已知设AB=2x,BC=3x,CD=4x,由题意得:x+3x+2x=3,解得x=0.5,所以BC=3x=1.5(cm)


    20.117°


    【解析】利用互余的定义得出∠AOC的度数,进而求出∠AOD的度数.


    解:∵将一副三角板的直角顶点重合,


    ∴∠AOB=∠COD=90°,


    ∵∠BOC=63°,


    ∴∠AOC=27°,


    ∴∠AOD=117°.


    故答案为:117°.


    21.见解析


    【解析】分别画出三视图即可


    如图:





    22.1cm.


    【解析】依据题意画出图形(如图),由BC=2AB,AB=2cm可得BC=4cm,又因点D是线段AC的中点可得,再由BD=BC-CD即可得BD的长.


    如图,由BC=2AB,AB=2cm,得


    BC=4cm,


    ∴AC=AB+BC=2+4=6cm,


    ∵点D是线段AC的中点,


    ∴AD=AC=×6=3cm.


    ∴BD=AD﹣AB=3﹣2=1cm.





    23.∠AOC∠BOC,∠AOD与∠BOD,∠COD与∠BOD,∠BOE与∠AOE,∠COE与∠AOE;90°.


    【解析】根据如果两个角的和等于180°(平角),就说这两个角互为补角进行分析即可;根据角平分线的定义可得∠COD=∠AOC,∠COE=∠BOC.再根据∠AOB=180°可得答案.


    (1)∠AOC∠BOC,∠AOD与∠BOD,∠COD与∠BOD,∠BOE与∠AOE,∠COE与∠AOE;


    (2)∵OD是∠AOC的平分线, ∴∠COD=∠AOC,


    ∵OE是∠COB的平分线, ∴∠COE=∠BOC.


    ∴∠DOE=∠COD+∠COE=∠AOC+∠BOC=∠AOB, ∵∠AOB=180° ∴∠DOE=90°.


    24.4cm


    【解析】根据线段的和差,可得AB的长,根据线段中点的性质,可得AD.AE的长,根据线段的和差,可得答案.


    解:∵AC=16cm,CB=AC,


    ∴BC=8cm,


    ∴AB=AC+BC=24cm,


    ∵D.E分别是线段AC.AB的中点,


    ∴AD=cm,AE==12cm,


    ∴DE=AE﹣AD=4cm.


    25.3cm


    【解析】首先由已知AB:BC:CD=2:4:3,CD=6cm,求出AD,再由M是AD的中点,求出DM,从而求出MC的长.


    解:由AB:BC:CD=2:4:3,设AB=2xcm,BC=4xcm,CD=3xcm,


    则CD=3x=6,解得x=2.


    因此,AD=AB+BC+CD=2x+4x+3x=18(cm).


    因为点M是AD的中点,所以DM=AD=×18=9(cm).


    MC=DM﹣CD=9﹣6=3(cm).


    26.(1)∠AOD=135°;(2)∠MON=54°.


    【解析】(1)根据角平分线的性质求出∠AOC的度数,然后根据∠AOC+∠AOD=180°求出∠AOD的度数;(2)首先设∠NOB=x°,则∠BOC=4x°,∠CON=3x°,根据角平分线的性质可得∠MON=x°,根据∠MON+∠NOB=90°求出x的值,然后计算.


    解:(1)∵∠AOM=90°,OC平分∠AOM


    ∴∠AOC=∠AOM=45°


    ∵∠AOC+∠AOD=180°


    ∴∠AOD=180°-∠AOC=180°-45°=135°.


    (2)∵∠BOC=4∠NOB


    ∴设∠NOB=x°,∠BOC=4x°


    ∴∠CON=∠COB-∠BON=4x°-x°=3x°


    ∵OM平分∠CON


    ∴∠COM=∠MON=∠CON=x°





    解得:x=36


    ∴∠MON=x°=×36°=54°


    即∠MON的度数为54°


    27.(1)15条;(2) (或写成);(3)4950条.


    【解析】


    (1)由已知条件可得出线段上有6个点时的线段数的规律是6×5÷2,即可得出答案;(2)通过观察得知,当线段AB上有n个点时,线段总数为:,即可得出结论;(3)把n=100代入前面的公式即可得出答案.


    (1)通过观察得知:当有3个点时,线段的总数为: =3;当有4个点时,线段的总数为: =6;当有5个点时,线段的总数为: =10;∴当有6个点时,线段的总数为: =15条.(2)由(1)可看出,当线段AB上有n个点时,线段总数为:(或去括号写成);(3)把n=100代入前面的公式:=100×99÷2=4950条.


    28.150°.


    【解析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.


    解:∵∠AOB=110°,∠COD=70°


    ∴∠AOC+∠BOD=∠AOB﹣∠COD=40°


    ∵OA平分∠EOC,OB平分∠DOF


    ∴∠AOE=∠AOC,∠BOF=∠BOD


    ∴∠AOE+∠BOF=40°


    相关试卷

    第四章几何图形初步期末复习试题2023—2024学年人教版数学七年级上册:

    这是一份第四章几何图形初步期末复习试题2023—2024学年人教版数学七年级上册,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    人教版数学七年级上册第四章几何图形初步期末章节基础练习:

    这是一份人教版数学七年级上册第四章几何图形初步期末章节基础练习,共4页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    人教版数学七年级上册第四章几何图形初步期末章节提升练习:

    这是一份人教版数学七年级上册第四章几何图形初步期末章节提升练习,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map