人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.1 圆优秀课堂检测
展开一.选择题
1.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
A.42°B.28°C.21°D.20°
2.下列说法正确的是( )
A.弦是直径B.弧是半圆
C.直径是圆中最长的弦D.半圆是圆中最长的弧
3.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=( )
A.2cmB.3cmC.5cmD.8cm
4.如图,已知OB为⊙O的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD长为( )
A.3cmB.6cmC.12cmD.24cm
5.小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160mm,直角顶点到轮胎与底面接触点AB长为320mm,请帮小名计算轮胎的直径为( )mm.
A.350B.700C.800D.400
6.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为( )
A.13B.24C.26D.28
7.如图,AB是⊙O的直径,点C、D是⊙O上的点,若∠CAB=25°,则∠ADC的度数为( )
A.65°B.55°C.60°D.75°
8.如图,半径为R的⊙O的弦AC=BD,且AC⊥BD于E,连结AB、AD,若AD=,则半径R的长为( )
A.1B.C.D.
二.填空题
9.如图,⊙O的半径为6,△OAB的面积为18,点P为弦AB上一动点,当OP长为整数时,P点有 个.
10.已知在半径为3的⊙O中,弦AB的长为4,那么圆心O到AB的距离为 .
11.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,则这个圆形截面的半径为 cm.
12.如图,某数学兴趣小组将正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形,则扇形的圆心角∠DAB度数是 度(保留一位小数).
13.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为 .
14.如图,正方形ABCD的四个顶点分别在⊙O上,点P在上不同于点C的任意一点,则∠DPC的度数是 度.
三.解答题
15.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠AEC=25°,求∠AOC的度数.
16.一辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.
17.如图,AB是⊙O的直径,∠CAB=∠DAB.求证:AC=AD.
18.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.
参考答案
一.选择题
1.解:连结OD,如图,
∵OB=DE,OB=OD,
∴DO=DE,
∴∠E=∠DOE,
∵∠1=∠DOE+∠E,
∴∠1=2∠E,
而OC=OD,
∴∠C=∠1,
∴∠C=2∠E,
∴∠AOC=∠C+∠E=3∠E,
∴∠E=∠AOC=×84°=28°.
故选:B.
2.解:A、直径是弦,但弦不一定是直径,故错误,不符合题意;
B、半圆是弧,但弧不一定是半圆,故错误,不符合题意;
C、直径是圆中最长的弦,正确,符合题意;
D、半圆是小于优弧而大于劣弧的弧,故错误,不符合题意,
故选:C.
3.解:∵弦CD⊥AB于点E,CD=8cm,
∴CE=CD=4cm.
在Rt△OCE中,OC=5cm,CE=4cm,
∴OE===3(cm),
∴AE=AO+OE=5+3=8(cm).
故选:D.
4.解:∵弦CD⊥OB于M,
∴CM=DM=CD,
∵OM:MB=4:1,
∴OM=OB=8cm,
∴CM===6(cm),
∴CD=2CM=12cm,
故选:C.
5.解:如图,连接OB,OC,作CD⊥OB于D.
设⊙O半径为xmm,在Rt△OCD中,
由勾股定理得方程,(x﹣160)2+3202=x2,
解得,x=400,
∴2x=800,
答:车轱辘的直径为800mm.
故选:C.
6.解:设圆心为O,过O作OC⊥AB于C,交⊙O于D,连接OA,如图所示:
∴AC=AB=×10=5,
设⊙O的半径为r寸,
在Rt△ACO中,OC=r﹣1,OA=r,
则有r2=52+(r﹣1)2,
解得r=13,
∴⊙O的直径为26寸,
故选:C.
7.解:∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠CAB=25°,
∴∠ABC=90°﹣∠CAB=65°,
∴∠ADC=∠ABC=65°.
故选:A.
8.解:∵弦AC=BD,
∴,
∴,
∴∠ABD=∠BAC,
∴AE=BE;
连接OA,OD,
∵AC⊥BD,AE=BE,
∴∠ABE=∠BAE=45°,
∴∠AOD=2∠ABE=90°,
∵OA=OD,
∴AD=R,
∵AD=,
∴R=1,
故选:A.
二.填空题
9.解:解法一:过O作OC⊥AB于C,则AC=BC,
设OC=x,AC=y,
∵AB是⊙O的一条弦,⊙O的半径为6,
∴AB≤12,
∵△OAB的面积为18,
∴,
则y=,
∴,
解得x=3或﹣3(舍),
∴OC=3>4,
∴4<OP≤6,
∵点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.
解法二:设△AOB中OA边上的高为h,
则,即,
∴h=6,
∵OB=6,
∴OA⊥OB,即∠AOB=90°,
∴AB=6,图中OC=3,
同理得:点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.
故答案为:4.
10.解:作OC⊥AB于C,连接OA,如图,
∵OC⊥AB,
∴AC=BC=AB=×4=2,
在Rt△AOC中,OA=5,
∴OC===,
即圆心O到AB的距离为.
故答案为:.
11.解:设此圆形截面所在圆的圆心为O,连接OA,过点O作OD⊥AB于点D,交弧于点C,
则CD=4cm,AD=AB=×16=8(cm),
设这个圆形截面的半径为rcm,
则OD=OC﹣CD=r﹣4(cm)
∵在Rt△AOD中,OA2=OD2+AD2,
∴r2=(r﹣4)2+82,
解得:r=10,
故这个圆形截面的半径为10cm.
故答案为:10.
12.解:设扇形的圆心角∠DAB为x°,边长为a.
=a×2,
解得,x=≈114.6°,
故答案为:114.6°.
13.解:连接AC,如图,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠ACD=90°﹣∠BCD=90°﹣40°=50°,
∴∠ABD=∠ACD=50°.
故答案为50°.
14.解:连接BD,
∵四边形ABCD是正方形,
∴∠DBC=45°,
∴∠DPC=180°﹣45°=135°.
故答案为:135.
三.解答题
15.解:连接OD,
∵AB=2DE=2OD,
∴OD=DE,
又∵∠E=25°,
∴∠DOE=∠E=25°,
∴∠ODC=50°,
同理∠C=∠ODC=50°
∴∠AOC=∠E+∠OCE=75°.
16.解:这辆卡车能通过厂门.理由如下:
如图M,N为卡车的宽度,过M,N作AB的垂线交半圆于C,D,过O作OE⊥CD,E为垂足,
则CD=MN=1.6m,AB=2m,
由作法得,CE=DE=0.8m,
又∵OC=OA=1m,
在Rt△OCE中,OE===0.6(m),
∴CM=2.3+0.6=2.9m>2.5m.
所以这辆卡车能通过厂门.
17.证明:如图,∵AB是⊙O的直径,
∴=.
又∵∠CAB=∠DAB,
∴=,
∴﹣=﹣,即=,
∴AC=AD.
18.解:过O点作半径OD⊥AB于E,如图,
∴AE=BE=AB=×8=4,
在Rt△AEO中,OE===3,
∴ED=OD﹣OE=5﹣3=2,
答:筒车工作时,盛水桶在水面以下的最大深度为2m.
人教版24.1.1 圆练习题: 这是一份人教版24.1.1 圆练习题,共7页。试卷主要包含了14,、已知直径等内容,欢迎下载使用。
人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.1 圆课后复习题: 这是一份人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.1 圆课后复习题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
数学人教版24.1.1 圆当堂检测题: 这是一份数学人教版24.1.1 圆当堂检测题,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。