|试卷下载
终身会员
搜索
    上传资料 赚现金
    人教版华师大北师大版等通用版 中考数学 专题26 动态几何之面动形成的函数关系问题(含解析)
    立即下载
    加入资料篮
    人教版华师大北师大版等通用版 中考数学 专题26 动态几何之面动形成的函数关系问题(含解析)01
    人教版华师大北师大版等通用版 中考数学 专题26 动态几何之面动形成的函数关系问题(含解析)02
    人教版华师大北师大版等通用版 中考数学 专题26 动态几何之面动形成的函数关系问题(含解析)03
    还剩10页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版华师大北师大版等通用版 中考数学 专题26 动态几何之面动形成的函数关系问题(含解析)

    展开

    专题26动态几何之面动形成的函数关系问题

    数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

       动态几何形成的函数关系和图象问题是动态几何中的基本问题,包括单动点形成的函数关系和图象问题,双(多)动点形成的函数关系和图象问题,线动形成的函数关系和图象问题,面动形成的函数关系和图象问题。本专题原创编写面动形成的函数关系问题模拟题

    面动问题就是在一些基本几何图形上,设计一个动面(包括平移和旋转),或由点动、线动形成面动,并对面在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究

    在中考压轴题中,形成的函数关系问题的重点和难点在于应用数形结合的思想准确地进行分类。

    1. 如图,点G、E、A、B在一条直线上,等腰直角△EFG从如图所示是位置出发,沿直线AB以1单位/秒向右匀速运动,当点G与B重合时停止运动。已知AD=1,AB=2,设△EFG与矩形ABCD重合部分的面积为S平方单位,运动时间为t,则S与t的函数关系是        

    【答案】

    【考点】面动问题的函数图象,矩形和等腰直角三角形性质,数形结合思想和分类思想的应用。

    【分析】分三种情况讨论:

    如图1,当点G在点A左侧,点E在点A右侧时, 此时0t1,

     AE= t,

    如图2,当点G,E在点A,B之间时, 此时1˂t2,

    2. 如图,已知直线交坐标轴于两点,以线段为边向上作正方形

    ,过点的抛物线与直线另一个交点为

     

    (1)请直接写出点的坐标;

    (2)求抛物线的解析式;

    (3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;

    【答案】1);(2)

    (3)当时,

    时,

    时,=

    【解析】

    抛物线过

    解得

    (3)①当点A运动到点F时,

    时,如图1,

     

     

    ②当点运动到轴上时,

    时,如图2,

     

     

    ③当点运动到轴上时,

    时,如图3,

     

    = 

    考点:二次函数的综合题

    点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.

     

    3. 如图,长是2宽是1的矩形和边长是1正三角形,矩形的正三角形的一边在同一水平线上,三角形沿该水平线自左向右匀速穿过矩形。设穿过的时间为t,矩形与三角形重合部分的面积为S,那么S关于t的函数大致图象应为    

    A.     B.       C.        D.

    【答案】A。

    【考点】问题的函数图象,矩形和等边三角形的性质

    故选A。

    4. 如图,平面之间坐标系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=,经过O,C两点做抛物线(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)

    (1)填空:用含t的代数式表示点A的坐标及k的值:A       ,k=       

    (2)随着三角板的滑动,当a=1时:

    ①请你验证:抛物线的顶点在函数的图象上;

    ②当三角板滑至点E为AB的中点时,求t的值。

    【答案】(1)(t,(k>0)。

    2)①当a=时1,其顶点坐标为

    对于,当x=时,。∴点在抛物线上。

    ∴当a=时,抛物线的顶点在函数的图象上。

    ②如图,过点E作EK⊥x轴于点K,

    ∵直角边AC=,∴另一直角边CB=2。

    ∵AC⊥x轴,∴AC∥EK。

    ∵点E是线段AB的中点,∴K为BC的中点。

    ∴EK是△ACB的中位线。

    ∴EK=AC=,CK=CB=1。∴E(t+1)。

    ∵点E在抛物线上,∴,解得

    ∴当三角板滑至点E为AB的中点时, 

    【考点】面动平移问题,曲线上点的坐标与方程的关系,二次函数的性质,三角形中位线定理,含30度直角三角形的性质。

    5. 如图(1),Rt△ABC和Rt△EFD中,AC与DE重合,AB=EF=1,∠BAC=∠DEF=90º,∠ ACB=∠EDF=30º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止。现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线) 于G,H点,如图(2)

    (1)问:始终与△AGC相似的三角形是      

    (2)设CG=x,BG=y,求y关于x的函数关系式;

    (3)问:当x为何值时,△HGA是等腰三角形。

    【答案】(1)△HGA。

    (2)∵∠BAC =90º,∠ ACB =30º,AB =1,∴,即。∴

                     又∵BC=2,∴

                     ∴y关于x的函数关系式为

                (3)(1)知,△AGC∽△HGA,若△HGA是等腰三角形,则AGC也是等腰三角形。所以分两种情况:

    ①当CG=AG时,AG是RtABC斜边上的中线, 此时,x=CG=BC=1。             

    ②当CG= CA时, x=CG=

                     ∴当x=1时,△AGH是等腰三角形。

    【考点】面动旋转问题,含30度角直角三角形的性质,三角形内角和外角性质,相似三角形的判定和性质,等腰三角形的判定,由实际问题列函数关系式,分类思想的应用。

               (3)考虑CG=AG和CG= CA两种情况分别求解即可。

    6. 如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

    (1)求点B,C的坐标;

    (2)判断CDB的形状并说明理由;

    (3)将COB沿x轴向右平移t个单位长度(0<t<3)得到QPE.QPE与CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

    则OM=1,DM=4,BM=OB﹣OM=2。

    过点C作CNDM于点N,

    则CN=1,DN=DM﹣MN=DM﹣OC=1。

    在RtOBC中,由勾股定理得:

    在RtCND中,由勾股定理得:

    在RtBMD中,由勾股定理得:

    BC2+CD2=BD2根据勾股定理的逆定理,得CDB为直角三角形。

    B(3,0),D(1,4),,解得:

    直线BD的解析式为y=﹣2x+6。

    连接CQ并延长,射线CQ交BD于点G,则G(,3)。

    COB向右平移的过程中:

    当0<t≤时,如答图2所示:

    设PQ与BC交于点K,可得QK=CQ=t,PB=PK=3﹣t.

    <t<3时,如答图3所示,

    设PQ分别与BC、BD交于点K、点J,

    CQ=t,KQ=t,PK=PB=3﹣t。

    直线BD解析式为y=﹣2x+6,令x=t,得y=6﹣2t。J(t,6﹣2t)。

    S=SPBJ﹣SPBK=PB•PJ﹣PB•PK=(3﹣t)(6﹣2t)﹣(3﹣t)2=t2﹣3t+

    综上所述,S与t的函数关系式为:S=

    【解析】

    <t<3时,如答图3所示,此时重叠部分为一个三角形。

     

     

     

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版华师大北师大版等通用版 中考数学 专题26 动态几何之面动形成的函数关系问题(含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map