还剩15页未读,
继续阅读
2021年中考复习数学专题训练:《四边形》选择题专项培优(一)
展开
2021年中考复习数学专题训练:
《四边形》选择题专项培优(一)
1.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是( )
A.360° B.540° C.630° D.720°
2.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
A.13 B.14 C.15 D.16
3.如图(2),在大房间一面墙壁上,边长15cm的正六边形A(如图(1))横排20片和以其一部分所形成的梯形B,三角形C、D上,菱形F等六种瓷砖毫无空隙地排列在一起.已知墙壁高3.3m,请你仔细观察各层瓷砖的排列特点,计算其中菱形F瓷砖需使用( )
A.220片 B.200片 C.180片 D.190片
4.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为( )
A.28 B.24 C.21 D.14
5.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )
A.1个 B.2个 C.3个 D.4个
6.如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是( )
A.absinα B.absinα C.abcosα D.abcosα
7.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )
A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF
8.在下列叙述中:
①一组对边相等的四边形是平行四边形;
②函数y=中,y随x的增大而减小;
③有一组邻边相等的平行四边形是菱形;
④有不可能事件A发生的概率为0.0001.
正确的叙述有( )
A.0个 B.1个 C.2个 D.3个
9.如图,在▱ABCD中,点E是AD的中点,延长BC到点F,使CF:BC=1:2,连接DF,EC.若AB=5,AD=8,sinB=,则DF的长等于( )
A. B. C. D.2
10.如图,点D是△ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合).以BD、BF为邻边作平行四边形BDEF,又APBE(点P、E在直线AB的同侧),如果BD=AB,那么△PBC的面积与△ABC面积之比为( )
A. B. C. D.
11.已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个( )
①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则=.
A.1 B.2 C.3 D.4
12.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( )
A.8 B.12 C.16 D.32
13.如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是( )
A.AC⊥BD B.AB=AD C.AC=BD D.∠ABD=∠CBD
14.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
A.甲正确,乙错误 B.乙正确,甲错误
C.甲、乙均正确 D.甲、乙均错误
15.下列说法中不正确的是( )
A.四边相等的四边形是菱形
B.对角线垂直的平行四边形是菱形
C.菱形的对角线互相垂直且相等
D.菱形的邻边相等
16.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( )
A.4 B.4 C.10 D.8
17.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是( )
A.1 B. C.2 D.
18.下列结论中,矩形具有而菱形不一定具有的性质是( )
A.内角和为360° B.对角线互相平分
C.对角线相等 D.对角线互相垂直
19.顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边中点得到的图形是( )
A.等腰梯形 B.正方形 C.菱形 D.矩形
20.如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是( )
A. B. C.﹣1 D.
21.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为( )
A. B. C. D.
22.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是( )
A. B.2 C. D.4
23.如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,连接EM,MF,FN,NE,要使四边形EMFN为正方形,则需添加的条件是( )
A.AB=CD,AB⊥CD B.AB=CD,AD=BC
C.AB=CD,AC⊥BD D.AB=CD,AD∥BC
24.如图的灰色小三角形为三个全等大三角形的重叠处,且三个大三角形各扣掉灰色小三角形后分别为甲、乙、丙三个梯形.若图中标示的∠1为58°,∠2为62°,∠3为60°,则关于甲、乙、丙三梯形的高的大小关系,下列叙述何者正确?( )
A.乙>甲>丙 B.乙>丙>甲 C.丙>甲>乙 D.丙>乙>甲
25.如图,梯形ABCD中,AD∥BC,∠A=Rt∠,∠C=60°,E是BC上一点,且∠ADB=∠BDE=∠EDC,已知DE=3,则梯形ABCD中位线长为( )
A. B. C. D.3
参考答案
1.解:一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,
只有630不能被180整除,所以a+b不可能是630°.
故选:C.
2.解:设新多边形是n边形,由多边形内角和公式得
(n﹣2)180°=2340°,
解得n=15,
原多边形是15﹣1=14,
故选:B.
3.解:一共是10排,最后一列梯形挨着的图形一定是菱形,
否则就会出来ABCDEFG七种瓷砖.
因此每一排有20个菱形.
故一共有200个.
故选:B.
4.解:∵四边形ABCD是平行四边形,
∴OB=OD,AB=CD,AD=BC,
∵平行四边形的周长为28,
∴AB+AD=14
∵OE⊥BD,
∴OE是线段BD的中垂线,
∴BE=ED,
∴△ABE的周长=AB+BE+AE=AB+AD=14,
故选:D.
5.解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.
∵CD=2AD,DF=FC,
∴CF=CB,
∴∠CFB=∠CBF,
∵CD∥AB,
∴∠CFB=∠FBH,
∴∠CBF=∠FBH,
∴∠ABC=2∠ABF.故①正确,
∵DE∥CG,
∴∠D=∠FCG,
∵DF=FC,∠DFE=∠CFG,
∴△DFE≌△CFG(ASA),
∴FE=FG,
∵BE⊥AD,
∴∠AEB=90°,
∵AD∥BC,
∴∠AEB=∠EBG=90°,
∴BF=EF=FG,故②正确,
∵S△DFE=S△CFG,
∴S四边形DEBC=S△EBG=2S△BEF,故③正确,
∵AH=HB,DF=CF,AB=CD,
∴CF=BH,∵CF∥BH,
∴四边形BCFH是平行四边形,
∵CF=BC,
∴四边形BCFH是菱形,
∴∠BFC=∠BFH,
∵FE=FB,FH∥AD,BE⊥AD,
∴FH⊥BE,
∴∠BFH=∠EFH=∠DEF,
∴∠EFC=3∠DEF,故④正确,
故选:D.
6.解:过点C作CE⊥DO于点E,
∵在▱ABCD中,对角线AC、BD相交成的锐角为α,AC=a,BD=b,
∴sinα=,
∴EC=COsinα=asinα,
∴S△BCD=CE×BD=×asinα×b=absinα,
∴▱ABCD的面积是:absinα×2=absinα.
故选:A.
7.解:∵在△ABC中,D,E分别是AB,BC的中点,
∴DE是△ABC的中位线,
∴DEAC.
A、根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.
B、根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.
C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.
D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.
故选:B.
8.解:①一组对边相等的四边形不一定是平行四边形,故①错误;
②函数y=中,在同一象限内,y随x的增大而减小,故②错误;
③有一组邻边相等的平行四边形是菱形,此③正确;
④有不可能事件A发生的概率为0.0001,不可能是发生的概率为0,故④错误.
故选:B.
9.证明:如图,在▱ABCD中,∠B=∠ADC,AB=CD=5,AD∥BC,且AD=BC=8.
∵E是AD的中点,
∴DE=AD.
又∵CF:BC=1:2,
∴DE=CF,且DE∥CF,
∴四边形CFDE是平行四边形.
∴CE=DF.
过点C作CH⊥AD于点H.
又∵sinB=,
∴sin∠CDH===,
∴CH=4.
在Rt△CDH中,由勾股定理得到:DH==3,则EH=4﹣3=1,
∴在Rt△CEH中,由勾股定理得到:EC===,
则DF=EC=.
故选:C.
10.解:过点P作PH∥BC交AB于H,连接CH,PF,
∵APBE,
∴四边形APEB是平行四边形,
∴PE∥AB,PE=AB,
∵四边形BDEF是平行四边形,
∴EF∥BD,EF=BD,
即EF∥AB,
∴P,E,F共线,
设BD=a,
∵BD=AB,
∴PE=AB=4a,
则PF=PE﹣EF=3a,
∵PH∥BC,
∴S△HBC=S△PBC,
∵PF∥AB,
∴四边形BFPH是平行四边形,
∴BH=PF=3a,
∵S△HBC:S△ABC=BH:AB=3a:4a=3:4,
∴S△PBC:S△ABC=3:4.
故选:D.
11.解:①△BEC≌△AFC (SAS),正确;
②∵△BEC≌△AFC,
∴CE=CF,∠BCE=∠ACF,
∵∠BCE+∠ECA=∠BCA=60°,
∴∠ACF+∠ECA=60,
∴△CEF是等边三角形,
故②正确;
③∵∠AGE=∠CAF+∠AFG=60°+∠AFG;
∠AFC=∠CFG+∠AFG=60°+∠AFG,
∴∠AGE=∠AFC,
故③正确;
④过点E作EM∥BC交AC于点M,
易证△AEM是等边三角形,则EM=AE=3,
∵AF∥EM,
∴则==.
故④正确,
故①②③④都正确.
故选:D.
12.解:如图所示:
∵四边形ABCD是菱形,
∴AO=CO=AC,DO=BO=BD,AC⊥BD,
∵面积为28,
∴AC•BD=2OD•AO=28 ①
∵菱形的边长为6,
∴OD2+OA2=36 ②,
由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.
∴OD+AO=8,
∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.
故选:C.
13.解:∵四边形ABCD的两条对角线相交于点O,且互相平分,
∴四边形ABCD是平行四边形,
∴AD∥BC,
当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;
当AC=BD时,可判定四边形ABCD是矩形;
当∠ABD=∠CBD时,
由AD∥BC得:∠CBD=∠ADB,
∴∠ABD=∠ADB,
∴AB=AD,
∴四边形ABCD是菱形;
故选:C.
14.解:甲的作法正确;
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAC=∠ACN,
∵MN是AC的垂直平分线,
∴AO=CO,
在△AOM和△CON中,
∴△AOM≌△CON(ASA),
∴MO=NO,
∴四边形ANCM是平行四边形,
∵AC⊥MN,
∴四边形ANCM是菱形;
乙的作法正确;
∵AD∥BC,
∴∠1=∠2,∠6=∠7,
∵BF平分∠ABC,AE平分∠BAD,
∴∠2=∠3,∠5=∠6,
∴∠1=∠3,∠5=∠7,
∴AB=AF,AB=BE,
∴AF=BE
∵AF∥BE,且AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF,
∴平行四边形ABEF是菱形;
故选:C.
15.解:A.四边相等的四边形是菱形;正确;
B.对角线垂直的平行四边形是菱形;正确;
C.菱形的对角线互相垂直且相等;不正确;
D.菱形的邻边相等;正确;
故选:C.
16.解:连接AE,如图:
∵EF是AC的垂直平分线,
∴OA=OC,AE=CE,
∵四边形ABCD是矩形,
∴∠B=90°,AD∥BC,
∴∠OAF=∠OCE,
在△AOF和△COE中,,
∴△AOF≌△COE(ASA),
∴AF=CE=5,
∴AE=CE=5,BC=BE+CE=3+5=8,
∴AB===4,
∴AC===4;
故选:A.
17.解:连接CE,如图所示:
∵四边形ABCD是矩形,
∴∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,
∵EF⊥AC,
∴AE=CE,
设DE=x,则CE=AE=8﹣x,
在Rt△CDE中,由勾股定理得:x2+62=(8﹣x)2,
解得:x=,
即DE=;
故选:B.
18.解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,
∴矩形具有而菱形不具有的性质为对角线相等,
故选:C.
19.解:∵等腰梯形的两条对角线相等,
∴顺次连接等腰梯形四边中点得到的四边形是菱形,
∵菱形的对角线互相垂直,
∴再顺次连接所得四边形四边的中点得到的图形是矩形.
故选:D.
20.解:∵四边形ABCD是正方形,
∴∠B=∠D=∠BAD=90°,AB=BC=CD=AD=1,
在Rt△ABE和Rt△ADF中,,
∴Rt△ABE≌Rt△ADF(HL),
∴∠BAE=∠DAF,
∵∠EAF=60°,
∴∠BAE+∠DAF=30°,
∴∠DAF=15°,
在AD上取一点G,使∠GFA=∠DAF=15°,如图所示:
∴AG=FG,∠DGF=30°,
∴DF=FG=AG,DG=DF,
设DF=x,则DG=x,AG=FG=2x,
∵AG+DG=AD,
∴2x+x=1,
解得:x=2﹣,
∴DF=2﹣,
∴CF=CD﹣DF=1﹣(2﹣)=﹣1;
故选:C.
21.解:正方形ABCD中,∵BC=4,
∴BC=CD=AD=4,∠BCE=∠CDF=90°,
∵AF=DE=1,
∴DF=CE=3,
∴BE=CF=5,
在△BCE和△CDF中,
,
∴△BCE≌△CDF(SAS),
∴∠CBE=∠DCF,
∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,
cos∠CBE=cos∠ECG=,
∴,CG=,
∴GF=CF﹣CG=5﹣=,
故选:A.
22.解:设正方形ADOF的边长为x,
由题意得:BE=BD=4,CE=CF=6,
∴BC=BE+CE=BD+CF=10,
在Rt△ABC中,AC2+AB2=BC2,
即(6+x)2+(x+4)2=102,
整理得,x2+10x﹣24=0,
解得:x=2,或x=﹣12(舍去),
∴x=2,
即正方形ADOF的边长是2;
故选:B.
23.解:∵点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,
∴EN、NF、FM、ME分别是△ABD、△BCD、△ABC、△ACD的中位线,
∴EN∥AB∥FM,ME∥CD∥NF,EN=AB=FM,ME=CD=NF,
∴四边形EMFN为平行四边形,
当AB=CD时,EN=FM=ME=NF,
∴平行四边形EMFN是菱形;
当AB⊥CD时,EN⊥ME,
则∠MEN=90°,
∴菱形EMFN是正方形;
故选:A.
24.解:∵∠1=∠α=58°,∠2=∠β=62°,∠3=∠γ=60°,
∴b>c>a,e>f>d,
∵S梯形甲=S梯形乙=S梯形丙,
∴梯形丙的两底>梯形甲的两底>梯形乙的两底,
∴梯形乙的高>梯形甲的高>梯形丙的高,
即:乙>甲>丙,
故选:A.
25.解:∵∠ADB=∠BDE=∠EDC,∴∠CDE=∠ADE,
∵AD∥BC,∴∠ADE=∠CED,
∴∠CDE=∠CED,∴CD=CE,
又∠C=60°,
∴△CDE是等边三角形,
∴DE=CE=CD=3,∠CED=60°,
∴∠BDE=∠DBE=30°,
∴BE=DE=3,
作DF⊥CE于F,根据等边三角形的三线合一,得EF=1.5,
所以AD=4.5,BC=6,
根据梯形的中位线等于两底和的一半,得它的中位线是.
故选:B.
《四边形》选择题专项培优(一)
1.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是( )
A.360° B.540° C.630° D.720°
2.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
A.13 B.14 C.15 D.16
3.如图(2),在大房间一面墙壁上,边长15cm的正六边形A(如图(1))横排20片和以其一部分所形成的梯形B,三角形C、D上,菱形F等六种瓷砖毫无空隙地排列在一起.已知墙壁高3.3m,请你仔细观察各层瓷砖的排列特点,计算其中菱形F瓷砖需使用( )
A.220片 B.200片 C.180片 D.190片
4.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为( )
A.28 B.24 C.21 D.14
5.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )
A.1个 B.2个 C.3个 D.4个
6.如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是( )
A.absinα B.absinα C.abcosα D.abcosα
7.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )
A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF
8.在下列叙述中:
①一组对边相等的四边形是平行四边形;
②函数y=中,y随x的增大而减小;
③有一组邻边相等的平行四边形是菱形;
④有不可能事件A发生的概率为0.0001.
正确的叙述有( )
A.0个 B.1个 C.2个 D.3个
9.如图,在▱ABCD中,点E是AD的中点,延长BC到点F,使CF:BC=1:2,连接DF,EC.若AB=5,AD=8,sinB=,则DF的长等于( )
A. B. C. D.2
10.如图,点D是△ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合).以BD、BF为邻边作平行四边形BDEF,又APBE(点P、E在直线AB的同侧),如果BD=AB,那么△PBC的面积与△ABC面积之比为( )
A. B. C. D.
11.已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个( )
①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则=.
A.1 B.2 C.3 D.4
12.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( )
A.8 B.12 C.16 D.32
13.如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是( )
A.AC⊥BD B.AB=AD C.AC=BD D.∠ABD=∠CBD
14.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
A.甲正确,乙错误 B.乙正确,甲错误
C.甲、乙均正确 D.甲、乙均错误
15.下列说法中不正确的是( )
A.四边相等的四边形是菱形
B.对角线垂直的平行四边形是菱形
C.菱形的对角线互相垂直且相等
D.菱形的邻边相等
16.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( )
A.4 B.4 C.10 D.8
17.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是( )
A.1 B. C.2 D.
18.下列结论中,矩形具有而菱形不一定具有的性质是( )
A.内角和为360° B.对角线互相平分
C.对角线相等 D.对角线互相垂直
19.顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边中点得到的图形是( )
A.等腰梯形 B.正方形 C.菱形 D.矩形
20.如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是( )
A. B. C.﹣1 D.
21.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为( )
A. B. C. D.
22.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是( )
A. B.2 C. D.4
23.如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,连接EM,MF,FN,NE,要使四边形EMFN为正方形,则需添加的条件是( )
A.AB=CD,AB⊥CD B.AB=CD,AD=BC
C.AB=CD,AC⊥BD D.AB=CD,AD∥BC
24.如图的灰色小三角形为三个全等大三角形的重叠处,且三个大三角形各扣掉灰色小三角形后分别为甲、乙、丙三个梯形.若图中标示的∠1为58°,∠2为62°,∠3为60°,则关于甲、乙、丙三梯形的高的大小关系,下列叙述何者正确?( )
A.乙>甲>丙 B.乙>丙>甲 C.丙>甲>乙 D.丙>乙>甲
25.如图,梯形ABCD中,AD∥BC,∠A=Rt∠,∠C=60°,E是BC上一点,且∠ADB=∠BDE=∠EDC,已知DE=3,则梯形ABCD中位线长为( )
A. B. C. D.3
参考答案
1.解:一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,
只有630不能被180整除,所以a+b不可能是630°.
故选:C.
2.解:设新多边形是n边形,由多边形内角和公式得
(n﹣2)180°=2340°,
解得n=15,
原多边形是15﹣1=14,
故选:B.
3.解:一共是10排,最后一列梯形挨着的图形一定是菱形,
否则就会出来ABCDEFG七种瓷砖.
因此每一排有20个菱形.
故一共有200个.
故选:B.
4.解:∵四边形ABCD是平行四边形,
∴OB=OD,AB=CD,AD=BC,
∵平行四边形的周长为28,
∴AB+AD=14
∵OE⊥BD,
∴OE是线段BD的中垂线,
∴BE=ED,
∴△ABE的周长=AB+BE+AE=AB+AD=14,
故选:D.
5.解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.
∵CD=2AD,DF=FC,
∴CF=CB,
∴∠CFB=∠CBF,
∵CD∥AB,
∴∠CFB=∠FBH,
∴∠CBF=∠FBH,
∴∠ABC=2∠ABF.故①正确,
∵DE∥CG,
∴∠D=∠FCG,
∵DF=FC,∠DFE=∠CFG,
∴△DFE≌△CFG(ASA),
∴FE=FG,
∵BE⊥AD,
∴∠AEB=90°,
∵AD∥BC,
∴∠AEB=∠EBG=90°,
∴BF=EF=FG,故②正确,
∵S△DFE=S△CFG,
∴S四边形DEBC=S△EBG=2S△BEF,故③正确,
∵AH=HB,DF=CF,AB=CD,
∴CF=BH,∵CF∥BH,
∴四边形BCFH是平行四边形,
∵CF=BC,
∴四边形BCFH是菱形,
∴∠BFC=∠BFH,
∵FE=FB,FH∥AD,BE⊥AD,
∴FH⊥BE,
∴∠BFH=∠EFH=∠DEF,
∴∠EFC=3∠DEF,故④正确,
故选:D.
6.解:过点C作CE⊥DO于点E,
∵在▱ABCD中,对角线AC、BD相交成的锐角为α,AC=a,BD=b,
∴sinα=,
∴EC=COsinα=asinα,
∴S△BCD=CE×BD=×asinα×b=absinα,
∴▱ABCD的面积是:absinα×2=absinα.
故选:A.
7.解:∵在△ABC中,D,E分别是AB,BC的中点,
∴DE是△ABC的中位线,
∴DEAC.
A、根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.
B、根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.
C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.
D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.
故选:B.
8.解:①一组对边相等的四边形不一定是平行四边形,故①错误;
②函数y=中,在同一象限内,y随x的增大而减小,故②错误;
③有一组邻边相等的平行四边形是菱形,此③正确;
④有不可能事件A发生的概率为0.0001,不可能是发生的概率为0,故④错误.
故选:B.
9.证明:如图,在▱ABCD中,∠B=∠ADC,AB=CD=5,AD∥BC,且AD=BC=8.
∵E是AD的中点,
∴DE=AD.
又∵CF:BC=1:2,
∴DE=CF,且DE∥CF,
∴四边形CFDE是平行四边形.
∴CE=DF.
过点C作CH⊥AD于点H.
又∵sinB=,
∴sin∠CDH===,
∴CH=4.
在Rt△CDH中,由勾股定理得到:DH==3,则EH=4﹣3=1,
∴在Rt△CEH中,由勾股定理得到:EC===,
则DF=EC=.
故选:C.
10.解:过点P作PH∥BC交AB于H,连接CH,PF,
∵APBE,
∴四边形APEB是平行四边形,
∴PE∥AB,PE=AB,
∵四边形BDEF是平行四边形,
∴EF∥BD,EF=BD,
即EF∥AB,
∴P,E,F共线,
设BD=a,
∵BD=AB,
∴PE=AB=4a,
则PF=PE﹣EF=3a,
∵PH∥BC,
∴S△HBC=S△PBC,
∵PF∥AB,
∴四边形BFPH是平行四边形,
∴BH=PF=3a,
∵S△HBC:S△ABC=BH:AB=3a:4a=3:4,
∴S△PBC:S△ABC=3:4.
故选:D.
11.解:①△BEC≌△AFC (SAS),正确;
②∵△BEC≌△AFC,
∴CE=CF,∠BCE=∠ACF,
∵∠BCE+∠ECA=∠BCA=60°,
∴∠ACF+∠ECA=60,
∴△CEF是等边三角形,
故②正确;
③∵∠AGE=∠CAF+∠AFG=60°+∠AFG;
∠AFC=∠CFG+∠AFG=60°+∠AFG,
∴∠AGE=∠AFC,
故③正确;
④过点E作EM∥BC交AC于点M,
易证△AEM是等边三角形,则EM=AE=3,
∵AF∥EM,
∴则==.
故④正确,
故①②③④都正确.
故选:D.
12.解:如图所示:
∵四边形ABCD是菱形,
∴AO=CO=AC,DO=BO=BD,AC⊥BD,
∵面积为28,
∴AC•BD=2OD•AO=28 ①
∵菱形的边长为6,
∴OD2+OA2=36 ②,
由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.
∴OD+AO=8,
∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.
故选:C.
13.解:∵四边形ABCD的两条对角线相交于点O,且互相平分,
∴四边形ABCD是平行四边形,
∴AD∥BC,
当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;
当AC=BD时,可判定四边形ABCD是矩形;
当∠ABD=∠CBD时,
由AD∥BC得:∠CBD=∠ADB,
∴∠ABD=∠ADB,
∴AB=AD,
∴四边形ABCD是菱形;
故选:C.
14.解:甲的作法正确;
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAC=∠ACN,
∵MN是AC的垂直平分线,
∴AO=CO,
在△AOM和△CON中,
∴△AOM≌△CON(ASA),
∴MO=NO,
∴四边形ANCM是平行四边形,
∵AC⊥MN,
∴四边形ANCM是菱形;
乙的作法正确;
∵AD∥BC,
∴∠1=∠2,∠6=∠7,
∵BF平分∠ABC,AE平分∠BAD,
∴∠2=∠3,∠5=∠6,
∴∠1=∠3,∠5=∠7,
∴AB=AF,AB=BE,
∴AF=BE
∵AF∥BE,且AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF,
∴平行四边形ABEF是菱形;
故选:C.
15.解:A.四边相等的四边形是菱形;正确;
B.对角线垂直的平行四边形是菱形;正确;
C.菱形的对角线互相垂直且相等;不正确;
D.菱形的邻边相等;正确;
故选:C.
16.解:连接AE,如图:
∵EF是AC的垂直平分线,
∴OA=OC,AE=CE,
∵四边形ABCD是矩形,
∴∠B=90°,AD∥BC,
∴∠OAF=∠OCE,
在△AOF和△COE中,,
∴△AOF≌△COE(ASA),
∴AF=CE=5,
∴AE=CE=5,BC=BE+CE=3+5=8,
∴AB===4,
∴AC===4;
故选:A.
17.解:连接CE,如图所示:
∵四边形ABCD是矩形,
∴∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,
∵EF⊥AC,
∴AE=CE,
设DE=x,则CE=AE=8﹣x,
在Rt△CDE中,由勾股定理得:x2+62=(8﹣x)2,
解得:x=,
即DE=;
故选:B.
18.解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,
∴矩形具有而菱形不具有的性质为对角线相等,
故选:C.
19.解:∵等腰梯形的两条对角线相等,
∴顺次连接等腰梯形四边中点得到的四边形是菱形,
∵菱形的对角线互相垂直,
∴再顺次连接所得四边形四边的中点得到的图形是矩形.
故选:D.
20.解:∵四边形ABCD是正方形,
∴∠B=∠D=∠BAD=90°,AB=BC=CD=AD=1,
在Rt△ABE和Rt△ADF中,,
∴Rt△ABE≌Rt△ADF(HL),
∴∠BAE=∠DAF,
∵∠EAF=60°,
∴∠BAE+∠DAF=30°,
∴∠DAF=15°,
在AD上取一点G,使∠GFA=∠DAF=15°,如图所示:
∴AG=FG,∠DGF=30°,
∴DF=FG=AG,DG=DF,
设DF=x,则DG=x,AG=FG=2x,
∵AG+DG=AD,
∴2x+x=1,
解得:x=2﹣,
∴DF=2﹣,
∴CF=CD﹣DF=1﹣(2﹣)=﹣1;
故选:C.
21.解:正方形ABCD中,∵BC=4,
∴BC=CD=AD=4,∠BCE=∠CDF=90°,
∵AF=DE=1,
∴DF=CE=3,
∴BE=CF=5,
在△BCE和△CDF中,
,
∴△BCE≌△CDF(SAS),
∴∠CBE=∠DCF,
∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,
cos∠CBE=cos∠ECG=,
∴,CG=,
∴GF=CF﹣CG=5﹣=,
故选:A.
22.解:设正方形ADOF的边长为x,
由题意得:BE=BD=4,CE=CF=6,
∴BC=BE+CE=BD+CF=10,
在Rt△ABC中,AC2+AB2=BC2,
即(6+x)2+(x+4)2=102,
整理得,x2+10x﹣24=0,
解得:x=2,或x=﹣12(舍去),
∴x=2,
即正方形ADOF的边长是2;
故选:B.
23.解:∵点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,
∴EN、NF、FM、ME分别是△ABD、△BCD、△ABC、△ACD的中位线,
∴EN∥AB∥FM,ME∥CD∥NF,EN=AB=FM,ME=CD=NF,
∴四边形EMFN为平行四边形,
当AB=CD时,EN=FM=ME=NF,
∴平行四边形EMFN是菱形;
当AB⊥CD时,EN⊥ME,
则∠MEN=90°,
∴菱形EMFN是正方形;
故选:A.
24.解:∵∠1=∠α=58°,∠2=∠β=62°,∠3=∠γ=60°,
∴b>c>a,e>f>d,
∵S梯形甲=S梯形乙=S梯形丙,
∴梯形丙的两底>梯形甲的两底>梯形乙的两底,
∴梯形乙的高>梯形甲的高>梯形丙的高,
即:乙>甲>丙,
故选:A.
25.解:∵∠ADB=∠BDE=∠EDC,∴∠CDE=∠ADE,
∵AD∥BC,∴∠ADE=∠CED,
∴∠CDE=∠CED,∴CD=CE,
又∠C=60°,
∴△CDE是等边三角形,
∴DE=CE=CD=3,∠CED=60°,
∴∠BDE=∠DBE=30°,
∴BE=DE=3,
作DF⊥CE于F,根据等边三角形的三线合一,得EF=1.5,
所以AD=4.5,BC=6,
根据梯形的中位线等于两底和的一半,得它的中位线是.
故选:B.
相关资料
更多