|教案下载
搜索
    上传资料 赚现金
    人教A版数学必修二2-2-3直线与平面平行的性质 教案
    立即下载
    加入资料篮
    人教A版数学必修二2-2-3直线与平面平行的性质 教案01
    人教A版数学必修二2-2-3直线与平面平行的性质 教案02
    人教A版数学必修二2-2-3直线与平面平行的性质 教案03
    还剩6页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中人教版新课标A第二章 点、直线、平面之间的位置关系2.3 直线、平面垂直的判定及其性质教案

    展开
    这是一份高中人教版新课标A第二章 点、直线、平面之间的位置关系2.3 直线、平面垂直的判定及其性质教案,共9页。

    §2.2.3  直线与平面平行的性质

    一、教材分析

        上节课已学习了直线与平面平行的判定定理,这节课将通过例题让学生体会应用线面平行的性质定理的难度,进而明确告诉学生:线面平行的性质定理是高考考查的重点,也是最难应用的两个定理之一.本节重点是直线与平面平行的性质定理的应用.

    二、教学目标

    1.知识与技能

    掌握直线与平面平行的性质定理及其应用.

    2.过程与方法

    学生通过观察与类比,借助实物模型性质及其应用.

    3.情感、态度与价值观

    1)进一步提高学生空间想象能力、思维能力.

    2)进一步体会类比的作用.

    3)进一步渗透等价转化的思想.

    三、教学重点难点

    教学重点直线与平面平行的性质定理.

    教学难点直线与平面平行的性质定理的应用.

    四、课时安排

    1课时

    五、教学设计

    (一)复习

        回忆直线与平面平行的判定定理:

    1)文字语言:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.

    2)符号语言为:

    3)图形语言为:如图1.

    1

     

    (二)导入新课

    思路1.(情境导入)

        教室内日光灯管所在的直线与地面平行,是不是地面内的所有直线都与日光灯管所在的直线平行?

    思路2.(事例导入)

        观察长方体(图2),可以发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面平行,你能在侧面C′D′DC所在平面内作一条直线与A′B平行吗?

    2

    (三)推进新课新知探究提出问题

    回忆空间两直线的位置关系.

    若一条直线与一个平面平行,探究这条直线与平面内直线的位置关系.

    用三种语言描述直线与平面平行的性质定理.

    试证明直线与平面平行的性质定理.

    应用线面平行的性质定理的关键是什么?

    总结应用线面平行性质定理的要诀.

    活动:问题引导学生回忆两直线的位置关系.

    问题借助模型锻炼学生的空间想象能力.

    问题引导学生进行语言转换.

    问题引导学生用排除法.

    问题引导学生找出应用的难点.

    问题鼓励学生总结,教师归纳.

    讨论结果:空间两条直线的位置关系:相交、平行、异面.

    若一条直线与一个平面平行,这条直线与平面内直线的位置关系不可能是相交(可用反证法证明),所以,该直线与平面内直线的位置关系还有两种,即平行或异面.

        怎样在平面内作一条直线与该直线平行呢(排除异面的情况)?经过这条直线的平面和这个平面相交,那么这条直线和交线平行.

    直线与平面平行的性质定理用文字语言表示为:

        如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.

        这个定理用符号语言可表示为:

    这个定理用图形语言可表示为:如图3.

    3

    已知a∥αaβα∩β=b.求证:a∥b.

    证明:

    应用线面平行的性质定理的关键是:过这条直线作一个平面.

    应用线面平行性质定理的要诀:见到线面平行,先过这条直线作一个平面找交线”.

     

    (四)应用示例

    思路1

    1  如图4所示的一块木料中,棱BC平行于面A′C′.

    4

    (1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?

    (2)所画的线与面AC是什么位置关系?

    活动:先让学生思考、讨论再回答,然后教师加以引导.

    分析:经过木料表面A′C′内的一点P和棱BC将木料锯开,实际上是经过BCBC外一点P作截面,也就是找出平面与平面的交线.我们可以由线面平行的性质定理和公理4、公理2作出.

    解:1)如图5,在平面A′C′内,过点P作直线EF,使EF∥B′C′

    5

    并分别交棱A′B′C′D′于点EF.连接BECF.

    EFBECF就是应画的线.

    (2)因为棱BC平行于面A′C′,平面BC′与平面A′C′交于B′C′,所以BC∥B′C′.

    由(1)知,EF∥B′C′

    所以EF∥BC.因此

    BECF显然都与平面AC相交.

    变式训练

        如图6a∥α,Aα另一侧的点,BCDa,线段ABACADαEFG点,若BD=4CF=4AF=5,求EG.

    6

    解:Aa∴Aa确定一个平面,设为β.

    ∵Ba∴Bβ.

    Aβ∴ABβ.

    同理ACβADβ.

    A与直线aα的异侧,

    ∴βα相交.

    ABD与面α相交,交线为EG.

    ∵BD∥αBDBAD,面BAD∩α=EG,

    ∴BD∥EG.

    ∴△AEG∽△ABD.

    .(相似三角形对应线段成比例)

    ∴EG=.

    点评:见到线面平行,先过这条直线作一个平面找交线,直线与交线平行,如果再需要过已知点,这个平面是确定的.

     

    2  已知平面外的两条平行直线中的一条平行于这个平面,求证另一条也平行于这个平面.如图7.

    7

    已知直线a,b,平面α,a∥b,a∥α,a,b都在平面α.

    求证b∥α.

    证明:a作平面β,使它与平面α相交,交线为c.

    ∵a∥α,aβ,α∩β=c,

    ∴a∥c.

    ∵a∥b,∴b∥c.

    ∵cα,bα,∴b∥α.

    变式训练

        如图8,EH分别是空间四边形ABCD的边ABAD的中点,平面αEH分别交BCCDFG.求证:EH∥FG.

    8

    证明:连接EH.

    ∵EH分别是ABAD的中点,

    ∴EH∥BD.

    BDBCDEHBCD,

    ∴EH∥BCD.

    EHαα∩BCD=FG,

    ∴EH∥FG.

    点评:见到线面平行,先过这条直线作一个平面找交线,则直线与交线平行.

     

    思路2

    1  求证:如果两个相交平面分别经过两条平行直线中的一条,那么它们的交线和这条直线平行.如图9.

    9

    已知a∥b,aαbβα∩β=c.

    求证:c∥a∥b.

    证明:

    变式训练

        求证:一条直线与两个相交平面都平行,则这条直线与这两个相交平面的交线平行.

    10

    已知:如图10,a∥α,a∥β,α∩β=b

    求证: a∥b.

    证明:如图10,过a作平面γδ,使得γ∩α=cδ∩β=d,那么有

    点评本题证明过程,实际上就是不断交替使用线面平行的判定定理、性质定理及公理4的过程.这是证明线线平行的一种典型的思路.

     

    2  如图11,平行四边形EFGH的四个顶点分别在空间四边形ABCD的边ABBCCDDA上,求证:BD∥EFGHAC∥EFGH.

    11

    证明:∵EFGH是平行四边形

    变式训练

        如图12,平面EFGH分别平行于CDABEFGH分别在BDBCACAD上,且CD=aAB=bCD⊥AB.

    12

    1)求证:EFGH是矩形;

    2)设DE=m,EB=n,求矩形EFGH的面积.

    (1)证明:∵CD∥平面EFGH,而平面EFGH∩平面BCD=EF,

    ∴CD∥EF.同理HG∥CD,∴EF∥HG.

    同理HE∥GF四边形EFGH为平行四边形.

    CD∥EFHE∥AB∴∠HEFCDAB所成的角.

    ∵CD⊥AB∴HE⊥EF.

    四边形EFGH为矩形.

    2解:由(1)可知在△BCDEF∥CDDE=mEB=n,

    .CD=a,∴EF=.

    HE∥AB,∴.

    ∵AB=b,∴HE=.

    四边形EFGH为矩形,

    ∴S矩形EFGH=HE·EF=.

    点评线面平行问题是平行问题的重点,有着广泛应用.

     

    (五)知能训练

    求证:经过两条异面直线中的一条有且只有一个平面和另一条直线平行.

    已知:ab是异面直线.

    求证:过b有且只有一个平面与a平行.

    证明:(1)存在性.如图13

    13

    在直线b上任取一点A,显然Aa.

    Aa作平面β,

    在平面β内过点A作直线a′∥a,

    a′b是相交直线,它们确定一个平面,设为α,

    ∵bαab异面,∴aα.

    ∵a∥a′a′α∴a∥α.

    b有一个平面αa平行.

    (2)唯一性.

    假设平面γ是过b且与a平行的另一个平面,

    bγ.∵Ab∴Aγ.

    ∵Aβ∴γβ相交,设交线为a″,则Aa″.

    ∵a∥γaβγ∩β=a″,∴a∥a″.a∥a′∴a′∥a″.

    这与a′∩a″=A矛盾.

    假设错误,故过b且与a平行的平面只有一个.

    综上所述,过b有且只有一个平面与a平行.

    变式训练

        已知:a∥αAαAb,且b∥a.求证:bα.

    证明:假设bα,如图14

    14

    设经过点A和直线a的平面为βα∩β=b′,  ∵a∥α∴a∥b′(线面平行则线线平行).

    ∵a∥b∴b∥b′,这与b∩b′=A矛盾.

    假设错误.bα.

     

    (六)拓展提升

        已知a,b为异面直线,aα,bβ,a∥β,b∥α,求证:α∥β.

    证明:如图15,在b上任取一点P,由点P和直线a确定的平面γ与平面β交于直线c,则cb相交于点P.

    15

    变式训练

        已知ABCD为异面线段,EF分别为ACBD中点,过EF作平面α∥AB.

    1)求证:CD∥α;

    2)若AB=4EF=CD=2,求ABCD所成角的大小.

    1证明:如图16,连接ADαG,连接GF,

    16

    ∵AB∥α,面ADB∩α=GFAB∥GF.

    ∵FBD中点,

    ∴GAD中点.

    ∵ACAD相交,确定的平面ACD∩α=EG,EAC中点,GAD中点,∴EG∥CD.

    2解:由(1)证明可知:

    ∵AB=4,GF=2,CD=2,∴EG=1, EF=.

    △EGF中,由勾股定理,∠EGF=90°,ABCD所成角的大小为90°.

     

    (七)课堂小结

        知识总结:利用线面平行的性质定理将直线与平面平行转化为直线与直线平行.

        方法总结:应用直线与平面平行的性质定理需要过已知直线作一个平面,是最难应用的定理之一;应让学生熟记:“过直线作平面,把线面平行转化为线线平行”.

     

    (八)作业

        课本习题2.2   A56.

     

     

     

     

     

     

     

     

    相关教案

    人教版新课标A必修22.2 直线、平面平行的判定及其性质教学设计及反思: 这是一份人教版新课标A必修22.2 直线、平面平行的判定及其性质教学设计及反思,共1页。

    高中数学人教版新课标A必修22.3 直线、平面垂直的判定及其性质教学设计及反思: 这是一份高中数学人教版新课标A必修22.3 直线、平面垂直的判定及其性质教学设计及反思,共9页。

    人教A版 (2019)必修 第二册8.5 空间直线、平面的平行第2课时教案设计: 这是一份人教A版 (2019)必修 第二册8.5 空间直线、平面的平行第2课时教案设计,共4页。教案主要包含了预习课本,引入新课,新知探究,典例分析,课堂小结,板书设计,作业等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教A版数学必修二2-2-3直线与平面平行的性质 教案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map