2020年浙教版九上数学期末复习卷《简单事件的概率》(含答案)
展开浙教版期末复习卷《简单事件的概率》
一、选择题
1.下列事件为确定性事件的有( )
①在1个标准大气压下,20摄氏度的纯水结冰;
②在满分100分的数学考试中,小白的考试成绩为105分;
③抛一枚硬币,落下后下面朝上;
④边长为a,b的长方形的面积为ab.
A.1个 B.2个 C.3个 D.4个
2.气象台预报“本市明天降水概率是80%”.对此信息,下列说法正确的是( )
A.本市明天将有80%的地区降水 B.本市明天将有80%的时间降水
C.明天肯定下雨 D.明天降水的可能性比较大
3.将1、2、3三个数字随机生成的点的坐标列成下表.如果每个点出现的可能性相等,那么从中任意取一点,这个点在函数y=x图象上的概率是( )
A.0.3 B.0.5 C. D.
4.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )
A. B. C. D.
5.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )
A.0.2 B.0.4 C.0.6 D.0.8
6.现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为( )
A.1 B. C. D.
7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )
A. B. C. D.
8.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )
A. B. C. D.
9.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )
A. B. C. D.
10.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为( )
A.12 B.15 C.18 D.21
二、填空题
11.在如图所示(A,B,C三个区域)的图形中随机撒一把豆子,豆子落在________区域的可能性最大(填“A”“B”或“C”).
12.给出下列函数:①y=2x-1;②y=-x;③y=-x2.从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是________.
13.在一个袋子里装有10个球,其中6个红球,3个黄球,1个绿球,这些球除颜色外,形状、大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,不是红球的概率是 .
14.如图,有甲,乙两个可以自由转动的转盘,若同时转动,则停止后指针都落在阴影区域内的概率是 .
15.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A,B,C,D四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是 .
16.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 .(填“公平”或“不公平”)
17.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是
18.如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是_______.
三、解答题
19.在三张大小、质地均相同的卡片上各写一个数字,分别为5、8、8,现将三张卡片放入一只不透明的盒子中,搅匀后从中任意摸出一张,记下数字后放回,搅匀后再任意摸出一张,记下数字.
(1)用树状图或列表等方法列出所有可能结果;
(2)求两次摸到不同数字的概率.
20.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x<90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.
请你根据统计图表提供的信息解答下列问题:
(1)上表中的a ,b= ,m= .
(2)本次调查共抽取了多少名学生?请补全条形图.
(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.
21.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球.
(1)请你列出所有可能的结果;
(2)求两次取得乒乓球的数字之积为奇数的概率.
22.为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择A、B中哪个转盘呢?并请说明理由.
23.现有四张完全相同的不透明卡片,其正面分别写有数字﹣2,﹣1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.
(1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率.
(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.
24.某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级,绘制了两种不完整统计图.
根据图中提供的信息,解答下列问题:
(1)参加演讲比赛的学生共有 人,扇形统计图中m= ,n= ,并把条形统计图补充完整.
(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图,求A等级中一男一女参加比赛的概率.(男生分别用代码 A1、A2表示,女生分别用代码B1、B2表示)
参考答案
1.答案为:C
2.答案为:D;
3.C
4.答案为:C
5.C
6.答案为:B
7.答案为:B
8.A
9.答案为:A.
解析:画树状图如图:
共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,
∴小李获胜的概率为;故选:A.
10.B
11.答案为:A.
12.答案为:;
13.答案为:0.4.
14.答案为:0.5.
15.答案为:.
16.答案为:不公平
17.答案为:10.
18.答案为:.
19.解:(1)画树状图如图所示:所有结果为:
(5,5),(5,8),(5,8),(8,5),(8,8),(8,8),(8,5),(8,8),(8,8);
(2)共有9种等可能的结果,两次摸到不同数字的结果有4个,
∴两次摸到不同数字的概率为.
20.解:
(1)a=16÷40%×20%=8,b=16÷40%×(1﹣20%﹣40%﹣10%)=12,m=1﹣20%﹣40%﹣10%=30%;
故答案为:8,12,30%;
(2)本次调查共抽取了4÷10%=40名学生;补全条形图如图所示;
(3)将男生分别标记为A,B,女生标记为a,b,
∵共有12种等可能的结果,恰为一男一女的有8种,
∴抽得恰好为“一男一女”的概率为=.
21.解:(1)根据题意列表如下:
由以上表格可知:有12种可能结果.
(2)在(1)中的12种可能结果中,两个数字之积为奇数的只有2种,
所以,P(两个数字之积是奇数).
22.解:列表如下:
从表中可以发现:A盘数字大于B盘数字的结果共有5种.
∴P(A数较大)=,P(B数较大)=.
∴P(A数较大)>P(B数较大),∴选择A装置的获胜可能性较大.
23.解:
(1)随机的取一张卡片,抽取的卡片上的数字为负数的概率为=;
(2)画树状图如图所示:
共有16个可能的结果,点A在直线y=2x上的结果有2个,
∴点A在直线y=2x上的概率为=.
24.解:(1)根据题意得:参加演讲比赛的学生共有:4÷10%=40(人),
∴m%=1﹣40%﹣10%﹣30%=20%,∴m=20,∵n%=×100%=30%,∴n=30;
如图:
故答案为:40,20,30;
(2)画树状图得:
∵共有12种等可能的结果,A等级中一男一女参加比赛的有8种情况,
∴A等级中一男一女参加比赛的概率为: =.