


所属成套资源:2021年中考数学 专项突破(几何函数难点知识全面讲义)
中考数学 专项训练 考点05 手拉手模型构造全等三角形
展开专题05 手拉手模型构造全等三角形【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。【知识总结】【基本模型】一、等边三角形手拉手-出全等 图1 图2 [来源:学科网]图3 图4 二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:[来源:Z#xx#k.Com]①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE; 图1 图2 图3 图41、如图,点C在线段AB上,△DAC和△DBE都是等边三角形,求证:△DAB≌△DCE;DA∥EC.解析:(1)△DAC和△DBE都是等边三角形.∴DA=DC,DB=DE,∠ADC=∠BDE=60°.∴DA=DC,DB=DE,∠ADC=∠BDE=60°∴∠ADC+∠CDB=∠BDE+∠CDB,(重点)即∠ADB=∠CDE在△DAB和△DCE中,DA=DC∠ADB=∠CDEDB=DE∴△DAB≌△DCE.(2)∵△DAB≌△DCE∴∠A=∠DCE=60°∵∠ADC=60°∴∠DCE=∠ADC∴DA∥EC.2、已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连结AE,BD交于点O,AE与DC交于点0,AE与DC交于点M,BD与AC交于点N.解析:∵△ACB和△DCE都是等腰三角形∠ACB=∠DCE=90°∴AC=BC,DC=EC∴∠ACB+∠ACD=∠DCE+∠ACD∴∠BCD=∠ACE在△ACE和△BCD中AC=BC∠ACE=∠BCDCE=CD∴△ACE≌△BCD(SAS)∴AE=BD3、已知,在△ABC中,AB=AC,点P平面内一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,⑴若点P在△ABC内部,求证BQ=CP;⑵若点P在△ABC外部,以上结论还成立吗?解析:(1)∵∠QAP=∠BAC∴∠QAP-∠BAP=∠BAC-∠BAP[来源:Z#xx#k.Com]即∠QAB=∠PAC另由旋转得AQ=AP在△AQB和△APC中AQ=AP∠QAB=∠PACAB=AC∴△AQB≌△APC∴BQ=CP(2)∵∠QAP=∠BAC∴∠QAP+∠BAP=∠BAC+∠BAP[来源:学科网]即∠QAB=∠PAC另由旋转得AQ=AP在△AQB和△APC中AQ=AP∠QAB=∠PACAB=AC∴△AQB≌△APC∴BQ=CP4、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=________________.解析:连接BD交于AC于点O,∵四边形ABCD、AGFE是正方形∴AB=AD,AE=AG,∠DAB=∠EAG∴∠EAB=∠GAD在△AEB和△AGD中AE=AG∠EAB=∠GADAB=AD∴△EAB≌△GAD(SAS)∴EB=GD∵四边形ABCD是正方形,AB=∴BD⊥AC,AC=BD==2∴∠DOG=90°,OA=OD=BD=1∵AG=1∴OG=OA+AG=2∴GD=,EB=5、已知正方形ABCD和正方形AEFG有一个公共点,点G、E分别在线段AD、AB上,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由。解析:连接BE∵四边形ABCD和四边形AEFG都是正方形∴AB=AD,AE=AG,∠BAD=∠EAG=90°∴∠BAD-∠BAG=∠EAG-∠BAG,即∠DAG=∠BAEAB=AD∠DAG=∠BAEAE=AG∴△BAE≌△DAG(SAS)∴BE=DG6、已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠BDC=45°;④其中结论正确的个数是_______解析:①∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE∵在△BAD和△CAE中AB=AC∠BAD=∠CAEAD=AE∴△BAD≌△CAE(SAS)∴BD=CE②∵△BAD≌△CAE[来源:Z&xx&k.Com]∴∠ABD=∠ACE∵∠ABD+∠DBC=45°∴∠ACE+∠DBC=45°∴∠DBC+∠DCB=90°则BD⊥CE③∵△ABC为等腰直角三角形∴∠ABC=∠ACB=45°∴∠ABD+∠DBC=45°∵∠ABD=∠ACE∴∠ACE+∠DBC=45°④∵BD⊥CE∴在Rt△BDE中,利用勾股定理得:即