所属成套资源:2021年中考数学 专项突破(几何函数难点知识全面讲义)
中考数学 专项训 练考点10 母抱子模型解直角三角形(基础)
展开专题10 母抱子模型解直角三角形【模型展示】【中考真题】1、如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长为(4+)米.2、如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33) 【答案】10.考点:解直角三角形的应用;探究型.【精典例题】1、如图,一艘轮船在A处时观测得小岛C在船的北偏东60°方向,轮船以40海里/时的速度向正东方向航行1.5小时到达B处,这时小岛C在船的北偏东30°方向.已知小岛C周围50海里范围内是暗礁区.(1)求B处到小岛C的距离(2)若轮船从B处继续向东方向航行,有无触礁危险?请说明理由.(参考数据:≈1.73)解:(1)由题意得∠CBD=60°,∠CAB=30°,∴∠ACB=30°,∴∠CAB=∠ACB,∴CB=AB=40×1.5=60(海里),∴B处到小岛C的距离为60海里; (2)过点C作CE⊥AD,垂足为点E,∵CE=CB×sin∠CBE=60×sin60°=30≈51.96海里,∴CE>50,∴轮船从B处继续向正东方向航行,没有触礁危险.2、金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)[来源:Zxxk.Com]解:过点C作CM⊥AB于M.则四边形MEDC是矩形,∴ME=DC=3.CM=ED,在Rt△AEF中,∠AFE=60°,设EF=x,则AF=2x,AE=x,在Rt△FCD中,CD=3,∠CFD=30°,∴DF=3,在Rt△AMC中,∠ACM=45°,∴∠MAC=∠ACM=45°,∴MA=MC,∵ED=CM,∴AM=ED,∵AM=AE﹣ME,ED=EF+DF,∴x﹣3=x+3,∴x=6+3,∴AE=(6+3)=6+9,∴AB=AE﹣BE=9+6﹣1≈18.4米.答:旗杆AB的高度约为18.4米.3、如图,为了测得电视塔AB的高度,在D处用高为1 m 的测角仪CD测得电视塔顶端A的仰角为30°,再向电视塔方向前进100 m到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔AB的高度(单位:m)为( C )A.50 B.51 C.50+1 D.1014、(2019·山东菏泽定陶三模)如图,小明在热气球A上看到横跨河流两岸的大桥BC,测得B,C两点的俯角分别为60°和45°,已知热气球离地面的高度为120 m,且大桥与地面在同一水平面上,求大桥BC的长度.(结果保留整数,≈1.73)解:如图,作AD⊥CB交CB所在直线于点D.由题意知,∠ACD=45°,∠ABD=60°.在Rt△ACD中,∠ACD=45°,∴CD=AD=120 m.在Rt△ABD中,∠ABD=60°,∴tan 60°=,[来源:Z#xx#k.Com]∴BD=AD=40 m,∴BC=CD-BD=120-40≈51(m).答:大桥BC的长度约为51 m.5、某数学兴趣小组为测量河对岸树AB的高,在河岸边选择一点C.从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得树梢A的仰角为30°,则树高为 米.(结果精确到0.1米,参考数据:≈1.414,≈1.732)解:根据题意可知:∠ABC=90°,CD=10,在Rt△ABC中,∠ACB=45°,∴AB=CB,在Rt△ABD中,∠ADB=30°,BD=CD+BC=10+AB,∴tan30°=,即=,解得AB≈13.7(米).答:树高约为13.7米.故答案为:13.7[来源:学§科§网]6、某矩形交通指示牌CDEF如图所示,AB的距离为5m,从A点测得指示牌顶端D点和底端C点的仰角分别是60°和45°,则指示牌的高度CD约为 m.(精确到0.1m.参考数据:≈1.414,≈1.732)解:在Rt△ADB中,∠DAB=60°,AB=5,∵tan∠DAB=,∴BD=5•tan60°=5,在Rt△BAC中,∵∠CAB=45°,∴AB=BC=5,∴CD=BD﹣BC=(5﹣5)m≈3.7(m).故答案为:3.7.7、为做好疫情宣传巡查工作,各地积极借助科技手段加大防控力度.如图,亮亮在外出期间被无人机隔空喊话“戴上口罩,赶紧回家”.据测量,无人机与亮亮的水平距离是15米,当他抬头仰视无人机时,仰角恰好为30°,若亮亮身高1.70米,则无人机距离地面的高度约为 米.(结果精确到0.1米,参考数据:≈1.732,≈1.414)解:如图,根据题意可知:DE⊥BE,AB⊥BE,过点D作DC⊥AB于点C,所以四边形DEBC是矩形,∴BC=ED=1.70,DC=EB=15,在Rt△ACD中,∠ADC=30°,∴tan30°=,即=,解得AC=5,∴AB=AC+CB=5+1.70≈10.4(米).答:无人机距离地面的高度约为10.4米.8、广州塔又称广州新电视塔,昵称小蛮腰,位于广州市海珠区赤岗塔附近,是中国第一高塔,世界第四高塔.如图,广州塔BD附近有一大厦AC高150米,张强在楼底A处测得塔顶D的仰角为45°,上到大厦顶C处测得塔顶D的仰角为37°,求广州塔BD的高.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:如图,过点C作CE⊥BD于点E,即四边形ACEB是矩形,[来源:学科网]∴BE=AC=150,CE=AB,根据题意可知:∠DAB=45°,∴DB=AB=CE,∴DE=DB﹣BE=DB﹣150,在Rt△CDE中,∠DCE=37°,∴DE=CE•tan37°,即DB﹣150≈0.75DB,解得DB≈600(米).答:广州塔BD的高约为600米.9、如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为30°,且斜坡AF的坡比为1:2.求大树BC的高度约为多少米?(≈1.732,结果精确到0.1)解:作DH⊥AE于点H,作DG⊥BC于点G,如图,则四边形DGCH为矩形,在Rt△ADH中,∵,∴AH=2DH,∵AH2+DH2=AD2,∴.∴DH=CG=3m,∴AH=2DH=6m,设BC=xm,则BG=(x﹣3)m,在Rt△BAC中,∠BAC=45°,∴AC=BC=xm,∴CH=DG=(x+6)m,在Rt△BDG中,∠BDG=30°,[来源:学科网ZXXK]∵tan30°=,∴,解得,x=≈15.3.答:大树BC的高度约为15.3米.