中考数学 专项训练 考点51 巧用图形的翻折解决几何问题
展开专题51 巧用图形的翻折解决几何问题
多年一些省市的中考题中出现了很多有关矩形纸片折叠的问题.由于这类问题的实践性强,需要同学们通过动手操作去发现解1决问题的方法.其规律为利用折叠前后线段、角的对应相等关系,构造直角三角形利用勾股定理来求解。
注意:必有等边,必有等角。观察并关注通过折叠新构建的三角形,特别是直角三角形。通过解设表示相关数量,建立等量关系(多数情况利用勾股定理)。解方程,得答案
【典例16】如图,在矩形ABCD中,AD=15,点E在边DC上,联结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.如果AD=3GD,那么DE=_____.
【解析】思路如下:
如图,过点F作AD的平行线交AB于M,交DC于N.
因为AD=15,当AD=3GD时,MF=AG=10,FN=GD=5.
在Rt△AMF中,AF=AD=15,MF=10,所以AM=.
设DE=m,那么NE=.
由△AMF∽△FNE,得,即.解得m=.
【巩固提升】
1、在△ABC中,已知∠A=80°,∠C=30°,现把△CDE沿DE进行不同的折叠得△C′DE,对折叠后产生的夹角进行探究:
(1)如图(1)把△CDE沿DE折叠在四边形ADEB内,则求∠1+∠2的和;
(2)如图(2)把△CDE沿DE折叠覆盖∠A,则求∠1+∠2的和;
(3)如图(3)把△CDE沿DE斜向上折叠,探求∠1、∠2、∠C的关系.
【解析】(1)∠1+∠2=180°﹣2∠CDE+180°﹣2∠CED
=360°﹣2(∠CDE+∠CED)
=360°﹣2(180°﹣∠C)
=2∠C
=60°;
(2)连接DG,
∠1+∠2=180°﹣∠C′﹣(∠ADG+∠AGD)
=180°﹣30°﹣(180°﹣80°)
=50°;
(3)∠2﹣∠1=180°﹣2∠CED﹣(2∠CDE﹣180°)
=360°﹣2(∠CDE+∠CED)
=360°﹣2(180°﹣∠C)
=2∠C
所以:∠2﹣∠1=2∠C.
2、如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在P处,折痕为EC,连接AP并延长AP交CD于F点.
(1)求证:四边形AECF为平行四边形;
(2)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.
【解析】(1)由折叠得到BE=PE,EC⊥PB,
∵E为AB的中点,∴AE=EB=PE,∴AP⊥BP,∴AF∥EC,
∵四边形ABCD是矩形,∴AE∥FC,∴四边形AECF为平行四边形;
(2)过P作PM⊥DC,交DC于点M,
在Rt△EBC中,EB=3,BC=4,根据勾股定理得:EC==5,
∵S△EBC=EB•BC=EC•BQ,∴BQ==,
由折叠得:BP=2BQ=,在Rt△ABP中,AB=6,BP=,
根据勾股定理得:AP==,
∵四边形AECF为平行四边形,∴AF=EC=5,FC=AE=3,∴PF=5﹣=,
∵PM∥AD,∴=,即=,解得:PM=,
则S△PFC=FC•PM=×3×=.
3、如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.
(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长
(2)如图2,当折痕的另一端F在AD边上且BG=10时,
①求证:EF=EG.②求AF的长.
(3)如图3,当折痕的另一端F在AD边上,B点的对应点E在长方形内部,E到AD的距离为2cm,且BG=10时,求AF的长.
(1)解:∵纸片折叠后顶点B落在边AD上的E点处,∴BF=EF,
∵AB=8,∴EF=8﹣AF,
在Rt△AEF中,AE2+AF2=EF2,即42+AF2=(8﹣AF)2,解得AF=3;
(2)①证明:∵纸片折叠后顶点B落在边AD上的E点处,
∴∠BGF=∠EGF,
∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG;
②解:∵纸片折叠后顶点B落在边AD上的E点处,
∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,
在Rt△EFH中,FH===6,∴AF=FH=6;
(3)法一:如图3,设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,
∵E到AD的距离为2cm,
∴EM=2,EN=8﹣2=6,
在Rt△ENG中,GN===8,
∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,
∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,
又∵∠ENG=∠KME=90°,
∴△GEN∽△EKM,
∴==,即==,解得EK=,KM=,
∴KH=EH﹣EK=8﹣=,
∵∠FKH=∠EKM,∠H=∠EMK=90°,
∴△FKH∽△EKM,∴=,即=,解得FH=,∴AF=FH=.
法二:如图4,设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,过点K作KL∥CD交BC于点L,连接GK,
∵E到AD的距离为2cm,
∴EM=2,EN=8﹣2=6,
在Rt△ENG中,GN===8,
设KM=a,
在△KME中,根据勾股定理可得:KE2=KM2+ME2=a2+4,
在△KEG中,根据勾股定理可得:GK2=GE2+KE2=102+a2+4,
在△GKL中,根据勾股定理可得:GK2=GL2+KL2=(8﹣a)2+82,
即102+a2+4=(8﹣a)2+82,
解得:a=,故KE=,
∴KH=EH﹣EK=8﹣=,
设FH=b,
在△KFH中,根据勾股定理可得:KF2=KH2+FH2,
∵KF=KA﹣AF=BL﹣AF=(BG+GN﹣KM)﹣AF=10+8﹣﹣b=﹣b,
即:(﹣b)2=()2+b2,解得:b=,∴AF=FH=.
4、如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上的点F处.
(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?
(2)如果AM=1,sin∠DMF=,求AB的长.
【分析】(1)由矩形的性质得∠A=∠B=∠C=90°,由折叠的性质和等角的余角相等,可得∠BPQ=∠AMP=∠DQC,所以△AMP∽△BPQ∽△CQD;(2)先证明MD=MQ,然后根据sin∠DMF=DFMD=35,设DF=3x,MD=5x,再分别表示出AP,BP,BQ,根据△AMP∽△BPQ,列出比例式解方程求解即可.
【解析】(1)△AMP∽△BPQ∽△CQD.
∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°.
由折叠的性质可知∠APM=∠EPM,∠EPQ=∠BPQ.
∴∠APM+∠BPQ=∠EPM+∠EPQ=90°.
∵∠APM+∠AMP=90°,∴∠BPQ=∠AMP,∴△AMP∽△BPQ.
同理:△BPQ∽△CQD.
根据相似的传递性可得△AMP∽△CQD;
(2)∵AD∥BC,∴∠DQC=∠MDQ.
由折叠的性质可知∠DQC=∠DQM.
∴∠MDQ=∠DQM.∴MD=MQ.
∵AM=ME,BQ=EQ,∴BQ=MQ-ME=MD-AM.
∵sin∠DMF=,则设DF=3x,MD=5x,则BP=PA=PE=,BQ=5x-1.
∵△AMP∽△BPQ,∴,即,解得x=(舍去)或x=2,∴AB=6.
5、发现(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A有何数量关系,直接写出你的结论,不必说明理由
思考(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=100°,求∠BIC的度数;
拓展(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.
【解析】(1)∠1+∠2=2∠A;
理由:根据翻折的性质,∠ADE=(180°﹣∠1),∠AED=(180°﹣∠2),
∵∠A+∠ADE+∠AED=180°,
∴∠A+(180﹣∠1)+(180﹣∠2)=180°,
整理得2∠A=∠1+∠2;
(2)由(1)∠1+∠2=2∠A,得2∠A=100°,∴∠A=50°
∵IB平分∠ABC,IC平分∠ACB,
∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,
∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(90°﹣∠A)=90°+×50°=115°;
(3)∵BF⊥AC,CG⊥AB,
∴∠AFH+∠AGH=90°+90°=180°,
∠FHG+∠A=180°,
∴∠BHC=∠FHG=180°﹣∠A,
由(1)知∠1+∠2=2∠A,∴∠A=(∠1+∠2),
∴∠BHC=180°﹣(∠1+∠2).
6、如图,△ABC是一个三角形的纸片,点D、E分别是△ABC边上的两点,
(1)探究图1:如果沿直线DE折叠,则∠BDA′与∠A的关系是 ;
(2)探究图2:如果折成图2的形状,猜想∠BDA′、∠CEA′和∠A的关系,并说明理由;
(3)探究图3:如果折成图3的形状,猜想∠BDA′、∠CEA′和∠A的关系,并说明理由;
(4)探究图4:若将四边形纸片ABCD折成图4的形状,直接写出∠DE A′、∠CF B′、∠A和∠B四个角之间的数量关系 .
【解析】(1)∠BDA′=2∠A,
理由:∵△ABC沿直线DE折叠,使A点落在CE上,图①,
∴∠A=∠AA′D,
∴∠BDA′=∠A+∠AA′D=2∠A;
故答案为:∠BDA′=2∠A;
(2)∠BDA′+∠CEA′=2∠A,
理由:图②,连结AA′,
∵∠BDA′=∠1+∠2,∠CEA=∠3+∠4,
∴∠BDA′+∠CEA=∠1+∠3+∠2+∠4=∠A+∠A′,
而∠A=∠AA′D,∴∠BDA′+∠CEA′=2∠A;
(3)∠BDA′﹣∠CEA′=2∠A.
理由如下:图③,
由翻折可得:∠A′=∠A,∠DEA′=∠DEA,∠A′DE=∠ADE,
由内角和性质得:(∠A′+∠A)+(∠DEA′+∠DEA)+(∠A′DE+∠ADE)=360°,
∴2∠A+(180°+∠CEA′)+(180°﹣∠BDA′)=360°
∴2∠A+∠CEA′﹣∠BDA′=0,∴∠BDA′﹣∠CEA′=2∠A;
(4)由折叠性质得∠A′EF=∠AEF,∠B′FE=∠BFE,
∴∠1+∠2=180°﹣(∠A′EF+∠AEF)+180°﹣(∠B′FE+∠BFE)
=180°﹣2∠AEF+180°﹣2∠BFE
=360°﹣2(360°﹣∠A﹣∠B)
=2(∠A+∠B)﹣360°.