还剩49页未读,
继续阅读
所属成套资源:2020年全国中考数学真题分类汇编
成套系列资料,整套一键下载
2020年中考数学真题分类汇编21:平移 旋转与折叠试卷
展开
2020年中考数学试题分类汇编之二十一
平移、旋转与折叠
一、 选择题
10.(2020河北)如图,将绕边的中点顺时针旋转180°.嘉淇发现,旋转后的与构成平行四边形,并推理如下:
点,分别转到了点,处,
而点转到了点处.
∵,
∴四边形是平行四边形.
小明为保证嘉淇的推理更严谨,想在方框中“∵,”和“∴四边形……”之间作补充.下列正确的是( )
A. 嘉淇推理严谨,不必补充 B. 应补充:且,
C. 应补充:且 D. 应补充:且,
【详解】根据旋转的性质得: CB=AD,AB=CD,
∴四边形ABDC是平行四边形;
故应补充“AB=CD”,
故选:B.
9.(2020苏州)如图,在中,,将绕点按逆时针方向旋转得到.若点恰好落在边上,且,则的度数为( )
A. B. C. D.
【答案】C
9.(2020乐山)在中,已知,,.如图所示,将绕点按逆时针方向旋转后得到.则图中阴影部分面积( )
A. B. C. D.
【答案】B
解:在Rt△ABC中,∵,
∴AC=2BC=2,
∴,
∵绕点按逆时针方向旋转后得到,
∴
∴
∴.
故选:B
12.(2020四川绵阳)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=,AD=2,将△ABC绕点C顺时针方向旋转后得,当恰好过点D时,为等腰三角形,若=2,则=( )
A. B. C. D.
【解析】A.
解:过点D作DE⊥BC于点E.则BE=AD=2,DE=AB=,
设BC=C=,CE=-2.
∵为等腰三角形,
∴C=BD=,∠DC=90°
∴DC=
在RT△DCE中,由勾股定理得:,
即:,解得:,(舍去)。
∴在RT△ABC中,AC===
由旋转得:BC=C,AC=,
∴∽
∴,即:
∴.故选A.
9.(2020无锡)如图,在四边形中,,,,把沿着翻折得到,若,则线段的长度为( )
A. B. C. D.
解:如图
∵ ,,,
∴,
∴,
∵,
∴,
∴,延长交于,
∴ ,则, ,
过点作,设,则,,
∴,
∴在中,,即,
解得:,
∴.
故选B.
5.(2020山东青岛)如图,将先向上平移1个单位,再绕点按逆时针方向旋转,得到,则点的对应点的坐标是( )
A. (0,4) B. (2,-2) C. (3,-2) D. (-1,4)
【答案】D
7.(2020山东青岛)如图,将矩形折叠,使点和点重合,折痕为,与交于点若,,则的长为( )
A. B. C. D.
解:由对折可得:
矩形,
BC=8
由对折得:
故选C.
9.(2020齐齐哈尔)((3分)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为( )
A.15° B.30° C.45° D.60°
解:如图,设AD与BC交于点F,
∵BC∥DE,
∴∠CFA=∠D=90°,
∵∠CFA=∠B+∠BAD=60°+∠BAD,
∴∠BAD=30°
故选:B.
11.(2020重庆A卷)如图,三角形纸片ABC,点D是BC边上一点,连接AD,把沿着AD翻折,得到,DE与AC交于点G,连接BE交AD于点F.若,,,的面积为2,则点F到BC的距离为( )
A. B. C. D.
【答案】B
【详解】解:∵DG=GE,
∴S△ADG=S△AEG=2,
∴S△ADE=4,
由翻折可知,ADB≌ADE,BE⊥AD,
∴S△ABD=S△ADE=4,∠BFD=90°,
∴•(AF+DF)•BF=4,
∴•(3+DF)•2=4,
∴DF=1,
∴DB===,
设点F到BD的距离为h,
则•BD•h=•BF•DF,
∴h=,
故选:B.
6.(2020上海)(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是( )
A.平行四边形 B.等腰梯形 C.正六边形 D.圆
【解答】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.
∵四边形ABEF向右平移可以与四边形EFCD重合,
∴平行四边形ABCD是平移重合图形,
故选:A.
10.(2020内蒙古呼和浩特)(3分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E、H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A'、D点的对称点为D',若∠FPG=90°,S△A′EP=8,S△D′PH=2,则矩形ABCD的长为( )
A.6+10 B.6+5 C.3+10 D.3+5
解:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,设AB=CD=x,
由翻折可知:PA′=AB=x,PD′=CD=x,
∵△A′EP的面积为8,△D′PH的面积为2,
又∵∠A′PF=∠D′PG=90°,
∴∠A′PD′=90°,则∠A′PE+∠D′PH=90°,
∴∠A′PE=∠D′HP, ∴△A′EP∽△D′PH,
∴A′P2:D′H2=8:2, ∴A′P:D′H=2:1,
∵A′P=x, ∴D′H=x,
∵S△D′PH=D′P•D′H=A′P•D′H,即,
∴x=(负根舍弃),
∴AB=CD=,D′H=DH=,D′P=A′P=CD=,A′E=2D′P=,
∴PE=,PH=,
∴AD==,
即矩形ABCD的长为,
故选:D.
6.(2020江苏连云港)(3分)如图,将矩形纸片沿折叠,使点落在对角线上的处.若,则等于
A. B. C. D.
【解答】解:四边形是矩形,
,
由折叠的性质得:,,
,
;
故选:.
8.(2020山东枣庄)(3分)如图的四个三角形中,不能由经过旋转或平移得到的是
A.B.C.D.
【解答】解:由题意,选项,,可以通过平移,旋转得到,选项可以通过翻折,平移,旋转得到.
故选:.
10.(2020山东枣庄)(3分)如图,平面直角坐标系中,点在第一象限,点在轴的正半轴上,,.将绕点逆时针旋转,点的对应点的坐标是
A., B. C., D.
【解答】解:如图,过点作轴于.
在△中,,,
,,
,
,,
故选:.
11.(2020山东枣庄)(3分)如图,在矩形纸片中,,点在边上,将沿直线折叠,点恰好落在对角线上的点处,若,则的长是
A. B.4 C.5 D.6
解:将沿直线折叠,点恰好落在对角线上的点处,
,,
,
,,
,,
故选:.
11.(3分)(2020•烟台)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为( )
A.12 B.920 C.25 D.13
解:∵四边形ABCD为矩形,
∴AD=BC=5,AB=CD=3,
∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
∴AF=AD=5,EF=DE,
在Rt△ABF中,BF=AF2-AB2=25-9=4,
∴CF=BC﹣BF=5﹣4=1,
设CE=x,则DE=EF=3﹣x
在Rt△ECF中,∵CE2+FC2=EF2,
∴x2+12=(3﹣x)2,解得x=43,
∴DE=EF=3﹣x=53,
∴tan∠DAE=DEAD=535=13,
故选:D.
16.(2020青海)(3分)剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )
A. B. C. D.
解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:
. 故选:A.
12.(2020山东滨州)(3分)如图,对折矩形纸片,使与重合,得到折痕,把纸片展平后再次折叠,使点落在上的点处,得到折痕,与相交于点.若直线交直线于点,,,则的长为
A. B. C. D.
【解答】解:,
由中位线定理得,
由折叠的性质可得,
,
,
,
,
,
,
过点作于,
,
,
由勾股定理得,
,
,
解得,
.
故选:.
10.(2020山东泰安)(4分)如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为( )
A.lcm B.63cm C.(23-3)cm D.(2-3)cm
【解答】解:过F作FH⊥BC于H,
∵高AG=2cm,∠B=45°,∴BG=AG=2cm,
∵FH⊥BC,∠BEF=30°,∴EH=3AG=23,
∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,
∵AG⊥BC,FH⊥BC,∴AG∥FH,
∵AG=FH,∴四边形AGHF是矩形,
∴AF=GH,
∴BC=BG+GH+HE+CE=2+2AF+23=6,
∴AF=2-3(cm),
故选:D.
7.(2020海南)(3分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,将Rt△ABC绕点A逆时针旋转得到Rt△AB'C',使点C'落在AB边上,连接BB',则BB'的长度是( )
A.1cm B.2cm C.cm D.2cm
解:∵在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,
∴AC=AB,则AB=2AC=2cm.
又由旋转的性质知,AC′=AC=AB,B′C′⊥AB,
∴B′C′是△ABB′的中垂线,
∴AB′=BB′.
根据旋转的性质知AB=AB′=BB′=2cm.
故选:B.
二、 填空题
12(2020江西).矩形纸片,长,宽,折叠纸片,使折痕经过点,交边于点,点落在点处,展平后得到折痕,同时得到线段,,不再添加其它线段,当图中存在角时,的长为 厘米.
【解析】当∠ABE=30°时,则∠=,在Rt△ABE中,tan∠ABE=,∴此时
.
当∠AEB=30°时,此时在Rt△ABE中,tan∠AEB=,∴
当∠时,过作AB的平行线交于F,BC于G,∵,
∴,设,则,∴
在矩形ABGF中,AF=BG,∴,解得,此时
故答案为:或或
13.(2020南京)(2分)将一次函数的图象绕原点逆时针旋转,所得到的图象对应的函数表达式是 .
解:在一次函数中,令,则,
直线经过点,
将一次函数的图象绕原点逆时针旋转,则点的对应点为,
旋转后得到的图象与原图象垂直,则对应的函数解析式为:,
将点代入得,,
解得,
旋转后对应的函数解析式为:,
16.(2020贵州黔西南)(3分)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为 3 .
【解答】解:如图所示:
由题意可得:∠1=∠2,AN=MN,∠MGA=90°,
则NG=12AM,故AN=NG, ∴∠2=∠4,
∵EF∥AB, ∴∠4=∠3,
∴∠1=∠2=∠3=∠4=13×90°=30°,
∵四边形ABCD是矩形,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,
∴AE=12AD=12BC=1,
∴AG=2, ∴EG=22-12=3,
故答案为:3.
16(2020湖北黄冈).如图所示,将一个半径,圆心角的扇形纸板放置在水平面的一条射线上.在没有滑动的情况下,将扇形沿射线翻滚至再次回到上时,则半径的中点P运动的路线长为_____________.
解:连接BP,如图,
∵P为AO的中点,AO=10cm,
∴PO=5cm,
由勾股定理得,BP=,
中点P经过的路线可以分为四段,当弧AB切射线OM于点B时,有OB⊥射线OM,此时P点绕不动点B转过了90°,此时点P经过的路径长为:cm;
第二段:OB⊥射线OM到OA⊥射线OM,P点绕动点转动,而这一过程中弧AB始终是切于射线OM的,所以P与转动点的连线始终⊥射线OM,所以P点过的路线长=AB的弧长,即;
第三段:OB⊥射线OM到P点落在射线OM上,P点绕不动点A转过了90°,此时点P经过的路径长为:;
第四段:OA⊥射线OM到OB与射线OM重合,P点绕不动点O转过了90°,此时点P经过的路径长为:;
所以,P点经过的路线总长S=.
故答案为:
17.(2020上海)(4分)如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,联结AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为 332 .
【解答】解:如图,过点E作EH⊥BC于H.
∵BC=7,CD=3,
∴BD=BC﹣CD=4,
∵AB=4=BD,∠B=60°,
∴△ABD是等边三角形,
∴ADB=60°,∴∠ADC=∠ADE=120°,
∴∠EDH=60°,
∵EH⊥BC,∴∠EHD=90°,
∵DE=DC=3,∴EH=DE•sin60°=332,
∴E到直线BD的距离为332,
故答案为332.
13.(2020宁夏)(3分)如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是 (4,) .
解:在中,令x=0得,y=4,
令y=0,得,解得x=,
∴A(,0),B(0,4),
由旋转可得△AOB≌△A1O1B,∠ABA1=90°,
∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90°,OA=O1A1=,OB=O1B=4,
∴∠OBO1=90°,
∴O1B∥x轴,
∴点A1的纵坐标为OB﹣OA的长,即为4=;
横坐标为O1B=OB=4,
故点A1的坐标是(4,),
故答案为:(4,).
7.(2020黑龙江牡丹江)(3分)如图,在中,,点在边上.将沿直线翻折,点落在点处,连接,交于点.若,,则 .
【解答】解:,,
,设,,则,
,,,
由于折叠,
,且△,
,即为等腰直角三角形,
,
,
,
故答案为:.
17.(2020广西南宁)(3分)以原点为中心,把点M (3,4)逆时针旋转90°得到点N,则点N的坐标为 (﹣4,3) .
解:如图,∵点M (3,4)逆时针旋转90°得到点N,
则点N的坐标为(﹣4,3).
故答案为:(﹣4,3).
15.(2020贵州遵义)(4分)如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是 1033 .
【解答】解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,
∴AB=2BM,∠A′MB=90°,MN∥BC.
∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.
∴A′B=AB=2BM.
在Rt△A′MB中,∵∠A′MB=90°,
∴sin∠MA′B=BMBA'=12,
∴∠MA′B=30°,
∵MN∥BC,
∴∠CBA′=∠MA′B=30°,
∵∠ABC=90°,
∴∠ABA′=60°,
∴∠ABE=∠EBA′=30°,
∴BE=ABcos30°532=1033.
故答案为:1033.
16.(3分)(2020•荆门)如图,矩形OABC的顶点A、C分别在x轴、y轴上,B(﹣2,1),将△OAB绕点O顺时针旋转,点B落在y轴上的点D处,得到△OED,OE交BC于点G,若反比例函数y=kx(x<0)的图象经过点G,则k的值为 -12 .
解:∵B(﹣2,1),∴AB=1,OA=2,
∵△OAB绕点O顺时针旋转,点B落在y轴上的点D处,得到△OED,
∴DE=AB=1,OE=OA=2,∠OED=∠OAB=90°,
∵∠COG=∠EOD,∠OCG=∠OED,
∴△OCG∽△OED,
∴CGDE=OCOE,即CG1=12,解得CG=12,
∴G(-12,1),
把G(-12,1)代入y=kx得k=-12×1=-12.
故答案为-12.
17.(3分)(2020•烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为 (4,2) .
【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).
故答案为(4,2).
4.(2020青海)(2分)如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为 12 .
解:∵△ABC沿BC边向右平移2个单位,得到△DEF,
∴AD=CF=2,AC=DF,
∵△ABC的周长为8,∴AB+BC+AC=8,∴AB+BC+DF=8,
∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+DF+AD+CF=8+2+2=12.
15.(2020四川眉山)(4分)如图,在Rt△ABC中,∠BAC=90°,AB=2.将△ABC绕点A按顺时针方向旋转至
△A1B1C1的位置,点B1恰好落在边BC的中点处,则CC1的长为 2 .
解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,
∴AB1=BC,BB1=B1C,AB=AB1,
∴BB1=AB=AB1,∴△ABB1是等边三角形,
∴∠BAB1=∠B=60°,∴∠CAC1=60°,
∵将△ABC绕点A按顺时针方向旋转至△A1B1C1的位置,
∴CA=C1A,∴△AC1C是等边三角形,∴CC1=CA,
∵AB=2,∴CA=2,∴CC1=2.
14.(2020山东泰安)(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为 (﹣2,1) .
【解答】解:将△A'B'C'绕点B'逆时针旋转180°,如图所示:
所以点M的坐标为(﹣2,1),故答案为:(﹣2,1).
三、 解答题
23.(2020河南)将正方形的边绕点逆时针旋转至 ,记旋转角为.连接,过点作垂直于直线,垂足为点,连接,
如图1,当时,的形状为 ,连接,可求出的值为 ;
当且时,
①中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;
②当以点为顶点的四边形是平行四边形时,请直接写出的值.
【答案】(1)等腰直角三角形,;(2)①结论不变,理由见解析;②3或1.
【详解】(1)由题知°,°,
∴°,且为等边三角形
∴°,
∴
∵
∴°
∴°
∴等腰直角三角形
连接BD,如图所示
∵°
∴即
∵
∴
∴
故答案为:等腰直角三角形,
(2)①两个结论仍然成立
连接BD,如图所示:
∵,
∴
∵
∴
∴
∵
∴
∴是等腰直角三角形
∴
∵四边形正方形
∴
∴
∵
∴
∴
∴
∴结论不变,依然成立
②若以点为顶点的四边形是平行四边形时,分两种情况讨论
第一种:以CD为边时,则,此时点在线段BA的延长线上,
如图所示:
此时点E与点A重合,
∴,得;
②当以CD为对角线时,如图所示:
此时点F为CD中点,
∵
∴
∵
∴
∴
∴
∴
∴
综上:的值为3或1.
16(2020江西).如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).
(1)在图1中,作关于点对称的;
(2)在图2中,作绕点顺时针旋转一定角度后,顶点仍在格点上的.
【解析】作图如下:
23.(2020长沙)在矩形ABCD中,E为上的一点,把沿AE翻折,使点D恰好落在BC边上的点F.
(1)求证:
(2)若,求EC的长;
(3)若,记,求的值.
解:(1)证明:∵四边形ABCD是矩形,
∴∠B=∠C=∠D=90°,
∴∠AFB+∠BAF=90°,
∵△AFE是△ADE翻折得到的,
∴∠AFE=∠D=90°,
∴∠AFB+∠CFE=90°,
∴∠BAF=∠CFE,
∴△ABF∽△FCE.
(2)解:∵△AFE是△ADE翻折得到的,
∴AF=AD=4,
∴BF=,
∴CF=BC-BF=AD-BF=2,
由(1)得△ABF∽△FCE,
∴,
∴,
∴EC=.
(3)
解:由(1)得△ABF∽△FCE,
∴∠CEF=∠BAF=,
∴tan+tan=,
设CE=1,DE=x,
∵,
∴AE=DE+2EC=x+2,AB=CD=x+1,AD=
∵△ABF∽△FCE,
∴,
∴,
∴,
∴,
∴,
∴x2-4x+4=0,
解得x=2,
∴CE=1,CF=,EF=x=2,AF= AD==,
∴tan+tan==.
23.(2020齐齐哈尔)((12分)综合与实践
在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.
实践发现:
对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.
(1)折痕BM 是 (填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答: 等边三角形 ;进一步计算出∠MNE= 60 °;
(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN= 15 °;
拓展延伸:
(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.
求证:四边形SATA'是菱形.
解决问题:
(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.
请写出以上4个数值中你认为正确的数值 7,9 .
【解答】解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,
∴EF垂直平分AB,
∴AN=BN,AE=BE,∠NEA=90°,
∵再一次折叠纸片,使点A落在EF上的点N处,
∴BM垂直平分AN,∠BAM=∠BNM=90°,
∴AB=BN,
∴AB=AN=BN,
∴△ABN是等边三角形,
∴∠EBN=60°,
∴∠ENB=30°,
∴∠MNE=60°,
故答案为:是,等边三角形,60;
(2)∵折叠纸片,使点A落在BC边上的点H处,
∴∠ABG=∠HBG=45°,
∴∠GBN=∠ABN﹣∠ABG=15°,
故答案为:15°;
(3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,
∴ST垂直平分AA',
∴AO=A'O,AA'⊥ST,
∵AD∥BC,
∴∠SAO=∠TA'O,∠ASO=∠A'TO,
∴△ASO≌△A'TO(AAS)
∴SO=TO,
∴四边形ASA'T是平行四边形,
又∵AA'⊥ST,
∴边形SATA'是菱形;
(4)∵折叠纸片,使点A落在BC边上的点A'处,
∴AT=A'T,
在Rt△A'TB中,A'T>BT,
∴AT>10﹣AT,
∴AT>5,
∵点T在AB上,
∴当点T与点B重合时,AT有最大值为10,
∴5<AT≤10,
∴正确的数值为7,9,
故答案为:7,9.
20.(2020湖北武汉)在的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为,,,.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:
(1)将线段绕点逆时针旋转,画出对应线段;
(2)在线段上画点,使(保留画图过程的痕迹);
(3)连接,画点关于直线的对称点,并简要说明画法.
解:(1)如图示,线段是将线段绕点逆时针旋转得到的;
(2)将线段绕点逆时针旋转,得到线段,
将线段绕点顺时针旋转,得到线段,
则四边形是正方形,连接,DB,交AB于点E,
则E点为所求,
理由如下:∵四边形是正方形,
∴,,
则有,
∴E点为所求;
(3)将线段绕点逆时针旋转,得到线段,
过E点作线段交于,交于,
则为所求;
理由如下:∵将线段绕点逆时针旋转,得到线段,
∴
∵,
∴,
∵四边形的顶点坐标分别为,,,,
∴四边形是平行四边形,
根据是平行四边形的对角线,
∴
∴
∴,
∴垂直平分
∴是点关于直线的对称点,
26.(2020重庆A卷)如图,在中,,,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.
(1)求证:;
(2)如图2所示,在点D运动的过程中,当时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;
(3)在点D运动的过程中,在线段AD上存在一点P,使的值最小.当的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.
【答案】(1)证明见解析;(2);(3)
解:(1)证明如下:∵,
∴,
∵,,
∴在和中,
∴,
∴,
∴,
在中,F为DE中点(同时),,
∴,即为等腰直角三角形,
∴,
∵,
∴;
(2)由(1)得,,,
∴,
在中,,
∵F为DE中点,
∴,
在四边形ADCE中,有,,
∴点A,D,C,E四点共圆,
∵F为DE中点,
∴F为圆心,则,
在中,
∵,
∴F为CG中点,即,
∴,
即;
(3)设点P存在,由费马定理可得,
∴,
设PD,
∴,
又,
∴,
又
∴.
24.(2020吉林)(8分)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.
【探究】求证:四边形AGHD是菱形.
【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为 56 .
【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为 120 .
解:【探究】∵四边形ABCD和AEFG都是平行四边形,
∴AE∥GF,DC∥AB,
∴四边形AGHD是平行四边形,
∵AD=AG, ∴四边形AGHD是菱形;
【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:
ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,
故答案为:56;
【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,
又AM=AM,
∴△AMD≌△AMG(SAS),
∴DM=GM,∠AMD=∠AMG,
∵∠AMD+∠AMG=180°,
∴∠AMD=∠AMG=90°,
∵sin∠BAD=,
∴,
∴DM=AD=4,
∴DG=8,
∵四边形ABCD和四边形AEFG是平行四边形,
∴DC∥AB∥GF,DC=AB=GF=9,
∴四边形CDGF是平行四边形,
∵∠AMD=90°,
∴∠CDG=∠AMD=90°,
∴四边形CDGF是矩形,
∴S矩形DCFG=DG•DC=8×9=72,
故答案为:72.
26.(2020宁夏)(10分)如图(1)放置两个全等的含有30°角的直角三角板ABC与DEF(∠B=∠E=30°),若将三角板ABC向右以每秒1个单位长度的速度移动(点C与点E重合时移动终止),移动过程中始终保持点B、F、C、E在同一条直线上,如图(2),AB与DF、DE分别交于点P、M,AC与DE交于点Q,其中AC=DF=,设三角板ABC移动时间为x秒.
(1)在移动过程中,试用含x的代数式表示△AMQ的面积;
(2)计算x等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?
【分析】(1)解直角三角形ABC求得EF=BC=3,设CF=x,可求,,根据三角形面积公式即可求出结论;
(2)根据“S重叠=S△ABC﹣S△AMQ﹣S△BPF”列出函数关系式,通过配方求解即可.
【解答】解:(1)解:因为Rt△ABC中∠B=30°,
∴∠A=60°,
∵∠E=30°,
∴∠EQC=∠AQM=60°,
∴△AMQ为等边三角形,
过点M作MN⊥AQ,垂足为点N.
在Rt△ABC中,,
∴EF=BC=3,
根据题意可知CF=x,
∴CE=EF﹣CF=3﹣x,
∴,
∴,
而,
∴,
(2)由(1)知BF=CE=3﹣x,
∴==,
所以当x=2时,重叠部分面积最大,最大面积是.
22.(2020黑龙江龙东)(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点、、均在格点上.
(1)将向左平移5个单位得到△,并写出点的坐标;
(2)画出△绕点顺时针旋转后得到的△,并写出点的坐标;
(3)在(2)的条件下,求△在旋转过程中扫过的面积(结果保留.
【解答】解:(1)如图所示,△即为所求,点的坐标为;
(2)如图所示,△即为所求,点的坐标为;
(3)如图,
,
△在旋转过程中扫过的面积为:.
26.(2020黑龙江龙东)(8分)如图①,在中,,,点、分别在、边上,,连接、、,点、、分别是、、的中点,连接、、.
(1)与的数量关系是 .
(2)将绕点逆时针旋转到图②和图③的位置,判断与有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.
【解答】解:(1)如图①中,
,,,,
,,,,
,,,,
,,
,,,
的等腰直角三角形,
,,,
故答案为.
(2)如图②中,结论仍然成立.
理由:连接,延长交于点.
和是等腰直角三角形,
,,,
,
,
,
,,
,
,
、、分别为、、的中点,
,,,,
,,
.
平移、旋转与折叠
一、 选择题
10.(2020河北)如图,将绕边的中点顺时针旋转180°.嘉淇发现,旋转后的与构成平行四边形,并推理如下:
点,分别转到了点,处,
而点转到了点处.
∵,
∴四边形是平行四边形.
小明为保证嘉淇的推理更严谨,想在方框中“∵,”和“∴四边形……”之间作补充.下列正确的是( )
A. 嘉淇推理严谨,不必补充 B. 应补充:且,
C. 应补充:且 D. 应补充:且,
【详解】根据旋转的性质得: CB=AD,AB=CD,
∴四边形ABDC是平行四边形;
故应补充“AB=CD”,
故选:B.
9.(2020苏州)如图,在中,,将绕点按逆时针方向旋转得到.若点恰好落在边上,且,则的度数为( )
A. B. C. D.
【答案】C
9.(2020乐山)在中,已知,,.如图所示,将绕点按逆时针方向旋转后得到.则图中阴影部分面积( )
A. B. C. D.
【答案】B
解:在Rt△ABC中,∵,
∴AC=2BC=2,
∴,
∵绕点按逆时针方向旋转后得到,
∴
∴
∴.
故选:B
12.(2020四川绵阳)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=,AD=2,将△ABC绕点C顺时针方向旋转后得,当恰好过点D时,为等腰三角形,若=2,则=( )
A. B. C. D.
【解析】A.
解:过点D作DE⊥BC于点E.则BE=AD=2,DE=AB=,
设BC=C=,CE=-2.
∵为等腰三角形,
∴C=BD=,∠DC=90°
∴DC=
在RT△DCE中,由勾股定理得:,
即:,解得:,(舍去)。
∴在RT△ABC中,AC===
由旋转得:BC=C,AC=,
∴∽
∴,即:
∴.故选A.
9.(2020无锡)如图,在四边形中,,,,把沿着翻折得到,若,则线段的长度为( )
A. B. C. D.
解:如图
∵ ,,,
∴,
∴,
∵,
∴,
∴,延长交于,
∴ ,则, ,
过点作,设,则,,
∴,
∴在中,,即,
解得:,
∴.
故选B.
5.(2020山东青岛)如图,将先向上平移1个单位,再绕点按逆时针方向旋转,得到,则点的对应点的坐标是( )
A. (0,4) B. (2,-2) C. (3,-2) D. (-1,4)
【答案】D
7.(2020山东青岛)如图,将矩形折叠,使点和点重合,折痕为,与交于点若,,则的长为( )
A. B. C. D.
解:由对折可得:
矩形,
BC=8
由对折得:
故选C.
9.(2020齐齐哈尔)((3分)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为( )
A.15° B.30° C.45° D.60°
解:如图,设AD与BC交于点F,
∵BC∥DE,
∴∠CFA=∠D=90°,
∵∠CFA=∠B+∠BAD=60°+∠BAD,
∴∠BAD=30°
故选:B.
11.(2020重庆A卷)如图,三角形纸片ABC,点D是BC边上一点,连接AD,把沿着AD翻折,得到,DE与AC交于点G,连接BE交AD于点F.若,,,的面积为2,则点F到BC的距离为( )
A. B. C. D.
【答案】B
【详解】解:∵DG=GE,
∴S△ADG=S△AEG=2,
∴S△ADE=4,
由翻折可知,ADB≌ADE,BE⊥AD,
∴S△ABD=S△ADE=4,∠BFD=90°,
∴•(AF+DF)•BF=4,
∴•(3+DF)•2=4,
∴DF=1,
∴DB===,
设点F到BD的距离为h,
则•BD•h=•BF•DF,
∴h=,
故选:B.
6.(2020上海)(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是( )
A.平行四边形 B.等腰梯形 C.正六边形 D.圆
【解答】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.
∵四边形ABEF向右平移可以与四边形EFCD重合,
∴平行四边形ABCD是平移重合图形,
故选:A.
10.(2020内蒙古呼和浩特)(3分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E、H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A'、D点的对称点为D',若∠FPG=90°,S△A′EP=8,S△D′PH=2,则矩形ABCD的长为( )
A.6+10 B.6+5 C.3+10 D.3+5
解:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,设AB=CD=x,
由翻折可知:PA′=AB=x,PD′=CD=x,
∵△A′EP的面积为8,△D′PH的面积为2,
又∵∠A′PF=∠D′PG=90°,
∴∠A′PD′=90°,则∠A′PE+∠D′PH=90°,
∴∠A′PE=∠D′HP, ∴△A′EP∽△D′PH,
∴A′P2:D′H2=8:2, ∴A′P:D′H=2:1,
∵A′P=x, ∴D′H=x,
∵S△D′PH=D′P•D′H=A′P•D′H,即,
∴x=(负根舍弃),
∴AB=CD=,D′H=DH=,D′P=A′P=CD=,A′E=2D′P=,
∴PE=,PH=,
∴AD==,
即矩形ABCD的长为,
故选:D.
6.(2020江苏连云港)(3分)如图,将矩形纸片沿折叠,使点落在对角线上的处.若,则等于
A. B. C. D.
【解答】解:四边形是矩形,
,
由折叠的性质得:,,
,
;
故选:.
8.(2020山东枣庄)(3分)如图的四个三角形中,不能由经过旋转或平移得到的是
A.B.C.D.
【解答】解:由题意,选项,,可以通过平移,旋转得到,选项可以通过翻折,平移,旋转得到.
故选:.
10.(2020山东枣庄)(3分)如图,平面直角坐标系中,点在第一象限,点在轴的正半轴上,,.将绕点逆时针旋转,点的对应点的坐标是
A., B. C., D.
【解答】解:如图,过点作轴于.
在△中,,,
,,
,
,,
故选:.
11.(2020山东枣庄)(3分)如图,在矩形纸片中,,点在边上,将沿直线折叠,点恰好落在对角线上的点处,若,则的长是
A. B.4 C.5 D.6
解:将沿直线折叠,点恰好落在对角线上的点处,
,,
,
,,
,,
故选:.
11.(3分)(2020•烟台)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为( )
A.12 B.920 C.25 D.13
解:∵四边形ABCD为矩形,
∴AD=BC=5,AB=CD=3,
∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
∴AF=AD=5,EF=DE,
在Rt△ABF中,BF=AF2-AB2=25-9=4,
∴CF=BC﹣BF=5﹣4=1,
设CE=x,则DE=EF=3﹣x
在Rt△ECF中,∵CE2+FC2=EF2,
∴x2+12=(3﹣x)2,解得x=43,
∴DE=EF=3﹣x=53,
∴tan∠DAE=DEAD=535=13,
故选:D.
16.(2020青海)(3分)剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )
A. B. C. D.
解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:
. 故选:A.
12.(2020山东滨州)(3分)如图,对折矩形纸片,使与重合,得到折痕,把纸片展平后再次折叠,使点落在上的点处,得到折痕,与相交于点.若直线交直线于点,,,则的长为
A. B. C. D.
【解答】解:,
由中位线定理得,
由折叠的性质可得,
,
,
,
,
,
,
过点作于,
,
,
由勾股定理得,
,
,
解得,
.
故选:.
10.(2020山东泰安)(4分)如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为( )
A.lcm B.63cm C.(23-3)cm D.(2-3)cm
【解答】解:过F作FH⊥BC于H,
∵高AG=2cm,∠B=45°,∴BG=AG=2cm,
∵FH⊥BC,∠BEF=30°,∴EH=3AG=23,
∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,
∵AG⊥BC,FH⊥BC,∴AG∥FH,
∵AG=FH,∴四边形AGHF是矩形,
∴AF=GH,
∴BC=BG+GH+HE+CE=2+2AF+23=6,
∴AF=2-3(cm),
故选:D.
7.(2020海南)(3分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,将Rt△ABC绕点A逆时针旋转得到Rt△AB'C',使点C'落在AB边上,连接BB',则BB'的长度是( )
A.1cm B.2cm C.cm D.2cm
解:∵在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,
∴AC=AB,则AB=2AC=2cm.
又由旋转的性质知,AC′=AC=AB,B′C′⊥AB,
∴B′C′是△ABB′的中垂线,
∴AB′=BB′.
根据旋转的性质知AB=AB′=BB′=2cm.
故选:B.
二、 填空题
12(2020江西).矩形纸片,长,宽,折叠纸片,使折痕经过点,交边于点,点落在点处,展平后得到折痕,同时得到线段,,不再添加其它线段,当图中存在角时,的长为 厘米.
【解析】当∠ABE=30°时,则∠=,在Rt△ABE中,tan∠ABE=,∴此时
.
当∠AEB=30°时,此时在Rt△ABE中,tan∠AEB=,∴
当∠时,过作AB的平行线交于F,BC于G,∵,
∴,设,则,∴
在矩形ABGF中,AF=BG,∴,解得,此时
故答案为:或或
13.(2020南京)(2分)将一次函数的图象绕原点逆时针旋转,所得到的图象对应的函数表达式是 .
解:在一次函数中,令,则,
直线经过点,
将一次函数的图象绕原点逆时针旋转,则点的对应点为,
旋转后得到的图象与原图象垂直,则对应的函数解析式为:,
将点代入得,,
解得,
旋转后对应的函数解析式为:,
16.(2020贵州黔西南)(3分)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为 3 .
【解答】解:如图所示:
由题意可得:∠1=∠2,AN=MN,∠MGA=90°,
则NG=12AM,故AN=NG, ∴∠2=∠4,
∵EF∥AB, ∴∠4=∠3,
∴∠1=∠2=∠3=∠4=13×90°=30°,
∵四边形ABCD是矩形,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,
∴AE=12AD=12BC=1,
∴AG=2, ∴EG=22-12=3,
故答案为:3.
16(2020湖北黄冈).如图所示,将一个半径,圆心角的扇形纸板放置在水平面的一条射线上.在没有滑动的情况下,将扇形沿射线翻滚至再次回到上时,则半径的中点P运动的路线长为_____________.
解:连接BP,如图,
∵P为AO的中点,AO=10cm,
∴PO=5cm,
由勾股定理得,BP=,
中点P经过的路线可以分为四段,当弧AB切射线OM于点B时,有OB⊥射线OM,此时P点绕不动点B转过了90°,此时点P经过的路径长为:cm;
第二段:OB⊥射线OM到OA⊥射线OM,P点绕动点转动,而这一过程中弧AB始终是切于射线OM的,所以P与转动点的连线始终⊥射线OM,所以P点过的路线长=AB的弧长,即;
第三段:OB⊥射线OM到P点落在射线OM上,P点绕不动点A转过了90°,此时点P经过的路径长为:;
第四段:OA⊥射线OM到OB与射线OM重合,P点绕不动点O转过了90°,此时点P经过的路径长为:;
所以,P点经过的路线总长S=.
故答案为:
17.(2020上海)(4分)如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,联结AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为 332 .
【解答】解:如图,过点E作EH⊥BC于H.
∵BC=7,CD=3,
∴BD=BC﹣CD=4,
∵AB=4=BD,∠B=60°,
∴△ABD是等边三角形,
∴ADB=60°,∴∠ADC=∠ADE=120°,
∴∠EDH=60°,
∵EH⊥BC,∴∠EHD=90°,
∵DE=DC=3,∴EH=DE•sin60°=332,
∴E到直线BD的距离为332,
故答案为332.
13.(2020宁夏)(3分)如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是 (4,) .
解:在中,令x=0得,y=4,
令y=0,得,解得x=,
∴A(,0),B(0,4),
由旋转可得△AOB≌△A1O1B,∠ABA1=90°,
∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90°,OA=O1A1=,OB=O1B=4,
∴∠OBO1=90°,
∴O1B∥x轴,
∴点A1的纵坐标为OB﹣OA的长,即为4=;
横坐标为O1B=OB=4,
故点A1的坐标是(4,),
故答案为:(4,).
7.(2020黑龙江牡丹江)(3分)如图,在中,,点在边上.将沿直线翻折,点落在点处,连接,交于点.若,,则 .
【解答】解:,,
,设,,则,
,,,
由于折叠,
,且△,
,即为等腰直角三角形,
,
,
,
故答案为:.
17.(2020广西南宁)(3分)以原点为中心,把点M (3,4)逆时针旋转90°得到点N,则点N的坐标为 (﹣4,3) .
解:如图,∵点M (3,4)逆时针旋转90°得到点N,
则点N的坐标为(﹣4,3).
故答案为:(﹣4,3).
15.(2020贵州遵义)(4分)如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是 1033 .
【解答】解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,
∴AB=2BM,∠A′MB=90°,MN∥BC.
∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.
∴A′B=AB=2BM.
在Rt△A′MB中,∵∠A′MB=90°,
∴sin∠MA′B=BMBA'=12,
∴∠MA′B=30°,
∵MN∥BC,
∴∠CBA′=∠MA′B=30°,
∵∠ABC=90°,
∴∠ABA′=60°,
∴∠ABE=∠EBA′=30°,
∴BE=ABcos30°532=1033.
故答案为:1033.
16.(3分)(2020•荆门)如图,矩形OABC的顶点A、C分别在x轴、y轴上,B(﹣2,1),将△OAB绕点O顺时针旋转,点B落在y轴上的点D处,得到△OED,OE交BC于点G,若反比例函数y=kx(x<0)的图象经过点G,则k的值为 -12 .
解:∵B(﹣2,1),∴AB=1,OA=2,
∵△OAB绕点O顺时针旋转,点B落在y轴上的点D处,得到△OED,
∴DE=AB=1,OE=OA=2,∠OED=∠OAB=90°,
∵∠COG=∠EOD,∠OCG=∠OED,
∴△OCG∽△OED,
∴CGDE=OCOE,即CG1=12,解得CG=12,
∴G(-12,1),
把G(-12,1)代入y=kx得k=-12×1=-12.
故答案为-12.
17.(3分)(2020•烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为 (4,2) .
【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).
故答案为(4,2).
4.(2020青海)(2分)如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为 12 .
解:∵△ABC沿BC边向右平移2个单位,得到△DEF,
∴AD=CF=2,AC=DF,
∵△ABC的周长为8,∴AB+BC+AC=8,∴AB+BC+DF=8,
∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+DF+AD+CF=8+2+2=12.
15.(2020四川眉山)(4分)如图,在Rt△ABC中,∠BAC=90°,AB=2.将△ABC绕点A按顺时针方向旋转至
△A1B1C1的位置,点B1恰好落在边BC的中点处,则CC1的长为 2 .
解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,
∴AB1=BC,BB1=B1C,AB=AB1,
∴BB1=AB=AB1,∴△ABB1是等边三角形,
∴∠BAB1=∠B=60°,∴∠CAC1=60°,
∵将△ABC绕点A按顺时针方向旋转至△A1B1C1的位置,
∴CA=C1A,∴△AC1C是等边三角形,∴CC1=CA,
∵AB=2,∴CA=2,∴CC1=2.
14.(2020山东泰安)(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为 (﹣2,1) .
【解答】解:将△A'B'C'绕点B'逆时针旋转180°,如图所示:
所以点M的坐标为(﹣2,1),故答案为:(﹣2,1).
三、 解答题
23.(2020河南)将正方形的边绕点逆时针旋转至 ,记旋转角为.连接,过点作垂直于直线,垂足为点,连接,
如图1,当时,的形状为 ,连接,可求出的值为 ;
当且时,
①中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;
②当以点为顶点的四边形是平行四边形时,请直接写出的值.
【答案】(1)等腰直角三角形,;(2)①结论不变,理由见解析;②3或1.
【详解】(1)由题知°,°,
∴°,且为等边三角形
∴°,
∴
∵
∴°
∴°
∴等腰直角三角形
连接BD,如图所示
∵°
∴即
∵
∴
∴
故答案为:等腰直角三角形,
(2)①两个结论仍然成立
连接BD,如图所示:
∵,
∴
∵
∴
∴
∵
∴
∴是等腰直角三角形
∴
∵四边形正方形
∴
∴
∵
∴
∴
∴
∴结论不变,依然成立
②若以点为顶点的四边形是平行四边形时,分两种情况讨论
第一种:以CD为边时,则,此时点在线段BA的延长线上,
如图所示:
此时点E与点A重合,
∴,得;
②当以CD为对角线时,如图所示:
此时点F为CD中点,
∵
∴
∵
∴
∴
∴
∴
∴
综上:的值为3或1.
16(2020江西).如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).
(1)在图1中,作关于点对称的;
(2)在图2中,作绕点顺时针旋转一定角度后,顶点仍在格点上的.
【解析】作图如下:
23.(2020长沙)在矩形ABCD中,E为上的一点,把沿AE翻折,使点D恰好落在BC边上的点F.
(1)求证:
(2)若,求EC的长;
(3)若,记,求的值.
解:(1)证明:∵四边形ABCD是矩形,
∴∠B=∠C=∠D=90°,
∴∠AFB+∠BAF=90°,
∵△AFE是△ADE翻折得到的,
∴∠AFE=∠D=90°,
∴∠AFB+∠CFE=90°,
∴∠BAF=∠CFE,
∴△ABF∽△FCE.
(2)解:∵△AFE是△ADE翻折得到的,
∴AF=AD=4,
∴BF=,
∴CF=BC-BF=AD-BF=2,
由(1)得△ABF∽△FCE,
∴,
∴,
∴EC=.
(3)
解:由(1)得△ABF∽△FCE,
∴∠CEF=∠BAF=,
∴tan+tan=,
设CE=1,DE=x,
∵,
∴AE=DE+2EC=x+2,AB=CD=x+1,AD=
∵△ABF∽△FCE,
∴,
∴,
∴,
∴,
∴,
∴x2-4x+4=0,
解得x=2,
∴CE=1,CF=,EF=x=2,AF= AD==,
∴tan+tan==.
23.(2020齐齐哈尔)((12分)综合与实践
在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.
实践发现:
对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.
(1)折痕BM 是 (填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答: 等边三角形 ;进一步计算出∠MNE= 60 °;
(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN= 15 °;
拓展延伸:
(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.
求证:四边形SATA'是菱形.
解决问题:
(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.
请写出以上4个数值中你认为正确的数值 7,9 .
【解答】解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,
∴EF垂直平分AB,
∴AN=BN,AE=BE,∠NEA=90°,
∵再一次折叠纸片,使点A落在EF上的点N处,
∴BM垂直平分AN,∠BAM=∠BNM=90°,
∴AB=BN,
∴AB=AN=BN,
∴△ABN是等边三角形,
∴∠EBN=60°,
∴∠ENB=30°,
∴∠MNE=60°,
故答案为:是,等边三角形,60;
(2)∵折叠纸片,使点A落在BC边上的点H处,
∴∠ABG=∠HBG=45°,
∴∠GBN=∠ABN﹣∠ABG=15°,
故答案为:15°;
(3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,
∴ST垂直平分AA',
∴AO=A'O,AA'⊥ST,
∵AD∥BC,
∴∠SAO=∠TA'O,∠ASO=∠A'TO,
∴△ASO≌△A'TO(AAS)
∴SO=TO,
∴四边形ASA'T是平行四边形,
又∵AA'⊥ST,
∴边形SATA'是菱形;
(4)∵折叠纸片,使点A落在BC边上的点A'处,
∴AT=A'T,
在Rt△A'TB中,A'T>BT,
∴AT>10﹣AT,
∴AT>5,
∵点T在AB上,
∴当点T与点B重合时,AT有最大值为10,
∴5<AT≤10,
∴正确的数值为7,9,
故答案为:7,9.
20.(2020湖北武汉)在的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为,,,.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:
(1)将线段绕点逆时针旋转,画出对应线段;
(2)在线段上画点,使(保留画图过程的痕迹);
(3)连接,画点关于直线的对称点,并简要说明画法.
解:(1)如图示,线段是将线段绕点逆时针旋转得到的;
(2)将线段绕点逆时针旋转,得到线段,
将线段绕点顺时针旋转,得到线段,
则四边形是正方形,连接,DB,交AB于点E,
则E点为所求,
理由如下:∵四边形是正方形,
∴,,
则有,
∴E点为所求;
(3)将线段绕点逆时针旋转,得到线段,
过E点作线段交于,交于,
则为所求;
理由如下:∵将线段绕点逆时针旋转,得到线段,
∴
∵,
∴,
∵四边形的顶点坐标分别为,,,,
∴四边形是平行四边形,
根据是平行四边形的对角线,
∴
∴
∴,
∴垂直平分
∴是点关于直线的对称点,
26.(2020重庆A卷)如图,在中,,,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.
(1)求证:;
(2)如图2所示,在点D运动的过程中,当时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;
(3)在点D运动的过程中,在线段AD上存在一点P,使的值最小.当的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.
【答案】(1)证明见解析;(2);(3)
解:(1)证明如下:∵,
∴,
∵,,
∴在和中,
∴,
∴,
∴,
在中,F为DE中点(同时),,
∴,即为等腰直角三角形,
∴,
∵,
∴;
(2)由(1)得,,,
∴,
在中,,
∵F为DE中点,
∴,
在四边形ADCE中,有,,
∴点A,D,C,E四点共圆,
∵F为DE中点,
∴F为圆心,则,
在中,
∵,
∴F为CG中点,即,
∴,
即;
(3)设点P存在,由费马定理可得,
∴,
设PD,
∴,
又,
∴,
又
∴.
24.(2020吉林)(8分)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.
【探究】求证:四边形AGHD是菱形.
【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为 56 .
【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为 120 .
解:【探究】∵四边形ABCD和AEFG都是平行四边形,
∴AE∥GF,DC∥AB,
∴四边形AGHD是平行四边形,
∵AD=AG, ∴四边形AGHD是菱形;
【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:
ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,
故答案为:56;
【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,
又AM=AM,
∴△AMD≌△AMG(SAS),
∴DM=GM,∠AMD=∠AMG,
∵∠AMD+∠AMG=180°,
∴∠AMD=∠AMG=90°,
∵sin∠BAD=,
∴,
∴DM=AD=4,
∴DG=8,
∵四边形ABCD和四边形AEFG是平行四边形,
∴DC∥AB∥GF,DC=AB=GF=9,
∴四边形CDGF是平行四边形,
∵∠AMD=90°,
∴∠CDG=∠AMD=90°,
∴四边形CDGF是矩形,
∴S矩形DCFG=DG•DC=8×9=72,
故答案为:72.
26.(2020宁夏)(10分)如图(1)放置两个全等的含有30°角的直角三角板ABC与DEF(∠B=∠E=30°),若将三角板ABC向右以每秒1个单位长度的速度移动(点C与点E重合时移动终止),移动过程中始终保持点B、F、C、E在同一条直线上,如图(2),AB与DF、DE分别交于点P、M,AC与DE交于点Q,其中AC=DF=,设三角板ABC移动时间为x秒.
(1)在移动过程中,试用含x的代数式表示△AMQ的面积;
(2)计算x等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?
【分析】(1)解直角三角形ABC求得EF=BC=3,设CF=x,可求,,根据三角形面积公式即可求出结论;
(2)根据“S重叠=S△ABC﹣S△AMQ﹣S△BPF”列出函数关系式,通过配方求解即可.
【解答】解:(1)解:因为Rt△ABC中∠B=30°,
∴∠A=60°,
∵∠E=30°,
∴∠EQC=∠AQM=60°,
∴△AMQ为等边三角形,
过点M作MN⊥AQ,垂足为点N.
在Rt△ABC中,,
∴EF=BC=3,
根据题意可知CF=x,
∴CE=EF﹣CF=3﹣x,
∴,
∴,
而,
∴,
(2)由(1)知BF=CE=3﹣x,
∴==,
所以当x=2时,重叠部分面积最大,最大面积是.
22.(2020黑龙江龙东)(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点、、均在格点上.
(1)将向左平移5个单位得到△,并写出点的坐标;
(2)画出△绕点顺时针旋转后得到的△,并写出点的坐标;
(3)在(2)的条件下,求△在旋转过程中扫过的面积(结果保留.
【解答】解:(1)如图所示,△即为所求,点的坐标为;
(2)如图所示,△即为所求,点的坐标为;
(3)如图,
,
△在旋转过程中扫过的面积为:.
26.(2020黑龙江龙东)(8分)如图①,在中,,,点、分别在、边上,,连接、、,点、、分别是、、的中点,连接、、.
(1)与的数量关系是 .
(2)将绕点逆时针旋转到图②和图③的位置,判断与有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.
【解答】解:(1)如图①中,
,,,,
,,,,
,,,,
,,
,,,
的等腰直角三角形,
,,,
故答案为.
(2)如图②中,结论仍然成立.
理由:连接,延长交于点.
和是等腰直角三角形,
,,,
,
,
,
,,
,
,
、、分别为、、的中点,
,,,,
,,
.
相关资料
更多