2020年中考数学真题分类汇编17:尺规作图试卷
展开2020年中考数学试题分类汇编之十七
尺规作图
一、选择题
6.(2020河北)如图1,已知,用尺规作它的角平分线.
如图2,步骤如下,
第一步:以为圆心,以为半径画弧,分别交射线,于点,;
第二步:分别以,为圆心,以为半径画弧,两弧在内部交于点;
第三步:画射线.射线即为所求.
下列正确的是( )
A. ,均无限制 B. ,的长
C. 有最小限制,无限制 D. ,的长
【答案】B
【详解】第一步:以为圆心,适当长为半径画弧,分别交射线,于点,;
∴;
第二步:分别以,为圆心,大于的长为半径画弧,两弧在内部交于点;
∴的长;
第三步:画射线.射线即为所求.
综上,答案为:;的长,
故选:B.
10(2020河南).如图,在中, ,分别以点为圆心,的长为半径作弧,两弧交于点,连接则四边形的面积为( )
A. B. C. D.
【答案】D
【解析】
【分析】
连接BD交AC于O,由已知得△ACD为等边三角形且BD是AC的垂直平分线,然后解直角三角形解得AC、BO、BD的值,进而代入三角形面积公式即可求解.
【详解】连接BD交AC于O,
由作图过程知,AD=AC=CD,
∴△ACD为等边三角形,
∴∠DAC=60º,
∵AB=BC,AD=CD,
∴BD垂直平分AC即:BD⊥AC,AO=OC,
在Rt△AOB中,
∴BO=AB·sin30º=,
AO=AB·cos30º=,AC=2AO=3,
在Rt△AOD中,AD=AC=3,∠DAC=60º,
∴DO=AD·sin60º=,
∴=,
故选:D.
9.(2020贵阳)如图,中,,利用尺规在,上分别截取,,使;分别以,为圆心、以大于为长的半径作弧,两弧在内交于点;作射线交于点,若,为上一动点,则的最小值为( )
A. 无法确定 B. C. 1 D. 2
【答案】C
【详解】解:由题意可知,当GP⊥AB时,GP的值最小,
根据尺规作图的方法可知,GB是∠ABC的角平分线,
∵∠C=90°, ∴当GP⊥AB时,GP=CG=1,
故答案为:C.
7.(2020广西南宁)(3分)如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为( )
A.60° B.65° C.70° D.75°
【分析】根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE的度数.
【解答】解:∵BA=BC,∠B=80°,∴∠A=∠ACB=(180°﹣80°)=50°,
∴∠ACD=180°﹣∠ACB=130°,
观察作图过程可知:CE平分∠ACD,
∴∠DCE=ACD=65°,∴∠DCE的度数为65°故选:B.
二、填空题
18.(2020天津)如图,在每个小正方形的边长为的网格中,的顶点,均落在格点上,点在网格线上,且.
(I)线段的长等于______;
(II)以为直径的半圆与边相交于点,若,分别为边,上的动点,当取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点,,并简要说明点,的位置是如何找到的(不要求证明)_______.
答案:(1)(2))如图,取格点,,连接,连接并延长,与相交于点;连接,与半圆相交于点,连接,与相交于点,连接并延长,与相交于点,则点,即为所求.
18(2020苏州).如图,已知是一个锐角,以点为圆心,任意长为半径画弧,分别交、于点、,再分别以点、为圆心,大于长为半径画弧,两弧交于点,画射线.过点作,交射线于点,过点作,交于点.设,,则________.
【详解】连接AB交OD于点H,过点A作AG⊥ON于点G,
由尺规作图步骤,可得:OD是∠MON的平分线,OA=OB,
∴OH⊥AB,AH=BH,
∵,
∴DE∥AB,
∵,
∴四边形ABED是平行四边形,
∴AB=DE=12,
∴AH=6,
∴OH=,
∵OB∙AG=AB∙OH,
∴AG===,
∴=.
故答案是:.
13.(2020新疆生产建设兵团)(5分)如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为 3 .
【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,结合点P在第一象限,可得关于a的方程,求解即可.
【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,
∴点P在∠BOA的角平分线上,
∴点P到x轴和y轴的距离相等,
又∵点P在第一象限,点P的坐标为(a,2a﹣3),
∴a=2a﹣3, ∴a=3.
故答案为:3.
16.(2020辽宁抚顺)(3分)如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为 5 .
14.(2020宁夏)(3分)如图,在△ABC中,∠C=84°,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则∠A= 32 度.
三、解答题
20.(2020北京)已知:如图,△ABC为锐角三角形,AB=BC,CD∥AB.
求作:线段BP,使得点P在直线CD上,且∠ABP=.
作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作线段.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)
(2)完成下面的证明.
证明:∵CD∥AB,
∴∠ABP= .
∵AB=AC,
∴点B在⊙A上.
又∵∠BPC=∠BAC( )(填推理依据)
∴∠ABP=∠BAC
【解析】(1)如图所示
(2)∠BPC;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半。
23.(2020广州)(本小题满分12分)
如图10,△ABD中,∠ABD =∠ADB.
(1)作点A关于BD的对称点C;
(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接BC,DC,连接AC,
交BD于点O.
① 求证:四边形ABCD是菱形;
② 取BC的中点E,连接OE,若,,求点E到AD的距离.
【详解过程】解:(1)作图如下:∴点C为所求的点A关于BD的对称点。
(2)①证明:∵点A与点C关于BD对称
∴BC=BA, DC=DA
∵△ABD中,∠ABD =∠ADB
∴AB=AD
∴AB=BC=CD=DA
∴四边形ABCD是菱形。
②过B作BF⊥AD于点F。根据平行线上的距离处处相等可知BF的长度就是点E到AD的距离。
∵四边形ABCD是菱形
∴AC⊥BD于点O,即∠BOC=90°。
∵在RT△BOC中,E为BC中点,,
∴BC=2OE=13.
∴AB=BC=CD=DA=13.
∵BD=10.
∴BO=DO=5
∴在RT△BCO中,CO=12.
∴AC=2CO=24.
∴==120.
∵
∴13×BD=120,即BD=.
所以点E到AD的距离。
23.(2020福建)如图,为线段外一点.
(1)求作四边形,使得,且;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的四边形中,,相交于点,,的中点分别为,求证:三点在同一条直线上.
【答案】(1)详见解析;(2)详见解析
【详解】解:(1)
则四边形就是所求作的四边形.
(2)∵,∴,,
∴,∴.
∵分别为,的中点,
∴,,∴.
连接,,又∵,
∴,∴,
∵点在上∴,∴,
∴三点在同一条直线上.
【点睛】本题考查尺规作图、平行线的判定与性质、相似三角形的性质与判定等基础知识,考查推理能力、空间观念与几何直观,考查化归与转化思想.
17.(2020陕西)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)
【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使∠PBC=45°即可.
【解答】解:如图,点P即为所求.
22.(2020哈尔滨)(7分)如图,方格纸中每个小正方形的边长均为1,线段和线段的端点均在小正方形的顶点上.
(1)在图中画出以为边的正方形,点和点均在小正方形的顶点上;
(2)在图中画出以为边的等腰三角形,点在小正方形的顶点上,且的周长为.连接,请直接写出线段的长.
【解答】解:(1)如图,正方形即为所求.
(2)如图,即为所求..
16(2020江西).如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).
(1)在图1中,作关于点对称的;
(2)在图2中,作绕点顺时针旋转一定角度后,顶点仍在格点上的.
【解析】作图如下:
27.(2020南京)(9分)如图①,要在一条笔直的路边上建一个燃气站,向同侧的、两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.
(1)如图②,作出点关于的对称点,线段与直线的交点的位置即为所求,即在点处建燃气站,所得路线是最短的.
为了证明点的位置即为所求,不妨在直线1上另外任取一点,连接、,证明.请完成这个证明.
(2)如果在、两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).
①生态保护区是正方形区域,位置如图③所示;
②生态保护区是圆形区域,位置如图④所示.
【解答】证明:(1)如图②,连接,
点,点关于对称,点在上,
,
,
同理可得,
,
;
(2)如图③,
在点出建燃气站,铺设管道的最短路线是,(其中点是正方形的顶点);
如图④,
在点出建燃气站,铺设管道的最短路线是,(其中,都与圆相切)
16.(2020贵阳)如图,在的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.
(1)在图①中,画一个直角三角形,使它的三边长都是有理数;
(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;
(3)在图③中,画一个直角三角形,使它的三边长都是无理数.
【分析】
(1)画一个边长为3,4,5的三角形即可;
(2)利用勾股定理,找长为、和4的线段,画三角形即可;
(3)利用勾股定理,找长为、和的线段,画三角形即可;
【详解】解:(答案不唯一)
图①(2)图②(3)图③
24.(2020无锡)如图,已知是锐角三角形.
(1)请在图1中用无刻度的直尺和圆规作图;作直线,使上的各点到、两点的距离相等;设直线与、分别交于点、,作一个圆,使得圆心在线段上,且与边、相切;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若,,则的半径为________.
解:(1)①先作的垂直平分线:分别以B,C为圆心,大于的长为半径画弧,连接两个交点即为直线l,分别交、于、;
②再作的角平分线:以点B为圆心,任意长为半径作圆弧,与的两条边分别有一个交点,再以这两个交点为圆心,相同长度为半径作弧,连接这两条弧的交点与点B,即为的角平分线,这条角平分线与线段MN的交点即为;
③以为圆心,为半径画圆,圆即为所求;
(2)过点作,垂足为,设
∵,,∴,∴
根据面积法,∴
∴,解得,
故答案为:.
19.(2020长沙)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:
已知:
求作:的平分线
做法:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,
(2)分别以点M,N为圆心,大于的长为半径画弧,两弧在的内部相交于点C
(3)画射线OC,射线OC即为所求.
请你根据提供的材料完成下面问题:
(1)这种作已知角平分线的方法的依据是__________________(填序号).
① ② ③ ④
(2)请你证明OC为的平分线.
解:(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC,从而得到OC为的平分线;
故答案为:①;
(2)如图,
连接MC、NC.
根据作图的过程知,
在△MOC与△NOC中,
,
∴△MOC≌△NOC(SSS),
∠AOC=∠BOC,
∴OC为的平分线.
15(2020山东青岛).已知:..
求作:,使它经过点和点,并且圆心在的平分线上,
解:根据题意可知,先作∠A的角平分线,
再作线段BC的垂直平分线相交于O,
即以O点为圆心,OB为半径,作圆O,
如下图所示:
21.(2020甘肃定西)如图,在中,是边上一点,且.
(1)尺规作图(保留作图痕迹,不写作法):
①作的角平分线交于点;
②作线段的垂直平分线交于点.
(2)连接,直接写出线段和的数量关系及位置关系.
.解:(1)①作出的角平分线;
②作出线段的垂直平分线.
(2)数量关系:;
位置关系:.
19.(2020吉林)(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:
(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.
(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.
(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.
解:(1)如图①,MN即为所求;
(2)如图②,PQ即为所求;
(3)如图③,△DEF即为所求.
17.(2020宁夏)(6分)在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1).
(1)画出△ABC关于x轴成轴对称的△A1B1C1;
(2)画出△ABC以点O为位似中心,位似比为1:2的△A2B2C2.
解:(1)由题意知:△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1),
则△ABC关于x轴成轴对称的△A1B1C1的坐标为A1(1,﹣3),B1(4,﹣1),C1(1,﹣1),
连接A1C1,A1B1,B1C1
得到△A1B1C1.
如图所示△A1B1C1为所求;
(2)由题意知:位似中心是原点,
则分两种情况:
第一种,△A2B2C2和△ABC在同一侧
则A2(2,6),B2(8,2),C2(2,2),
连接各点,得△A2B2C2.
第二种,△A2B2C2在△ABC的对侧
A2(﹣2,﹣6),B2(﹣8,﹣2),C2(﹣2,﹣2),
连接各点,得△A2B2C2.
综上所述:如图所示△A2B2C2为所求;
21.(2020江苏泰州)(10分)如图,已知线段,点在平面直角坐标系内.
(1)用直尺和圆规在第一象限内作出点,使点到两坐标轴的距离相等,且与点的距离等于.(保留作图痕迹,不写作法)
(2)在(1)的条件下,若,点的坐标为,求点的坐标.
【解答】解:(1)如图,点即为所求;
(2)由(1)可得是角平分线,设点,
过点作轴于点,过点作轴于点,于点,
,点的坐标为,
,,
根据勾股定理,得
,
,
解得,(舍去).
所以点的坐标为.