开学活动
搜索
    上传资料 赚现金

    【北师大版】2021版高考数学一轮复习第九章立体几何9.7.2利用空间向量求二面角与空间距离练习

    【北师大版】2021版高考数学一轮复习第九章立体几何9.7.2利用空间向量求二面角与空间距离练习第1页
    【北师大版】2021版高考数学一轮复习第九章立体几何9.7.2利用空间向量求二面角与空间距离练习第2页
    【北师大版】2021版高考数学一轮复习第九章立体几何9.7.2利用空间向量求二面角与空间距离练习第3页
    还剩7页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【北师大版】2021版高考数学一轮复习第九章立体几何9.7.2利用空间向量求二面角与空间距离练习

    展开

    9.7.2 利用空间向量求二面角与空间距离核心考点·精准研析考点一 求二面角 1.考什么:(1)考查与二面角相关的问题.(2)考查直观想象与数学运算的核心素养.2.怎么考:以柱、锥、台等几何体为载体考查与二面角相关的证明、求值问题.3.新趋势:以求二面角或某一三角函数值为主要命题方向.1.利用空间向量求二面角的两种方法:(1)分别在二面角的两个半平面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小;(2)通过平面的法向量来求:设二面角的两个半平面的法向量分别为n1n2,则二面角的大小等于<n1,n2>(π-<n1,n2>).2.交汇问题: 常常与证明线面的平行、垂直关系同时考查.求二面角或某一三角函数值【典例】 (2019·全国卷Ⅱ)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,E在棱AA1,BEEC1. (1)证明:BE平面EB1C1.(2)AE=A1E,求二面角B-EC-C1的正弦值.【解析】(1)由已知得,B1C1平面ABB1A1,BE平面ABB1A1,B1C1BE.BEEC1,EC1B1C1=C1,所以BE平面EB1C1.(2)(1)BEB1=90°.由题设知RtABERtA1B1E,所以AEB=45°,AE=AB,AA1=2AB.D为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系D-xyz,C(0,1,0),B(1,1,0),C1(0,1,2),E(1,0,1),=(1,0,0),=(1,-1,1),=(0,0,2).设平面EBC的法向量为n=(x,y,z),所以可取n=(0,-1,-1).设平面ECC1的法向量为m=(x,y,z),所以可取m=(1,1,0).于是cos<n,m>?==-.所以二面角B-EC-C1的正弦值为.与二面角有关的综合问题【典例】如图,在梯形ABCD,ABCD,BCD=,四边形ACFE为矩形,CF平面ABCD,AD=CD=BC=CF=1.(1)求证:EF平面BCF.(2)M在线段EF(含端点)上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值. 【解析】(1)在梯形ABCD,因为ABCD,AD=CD=BC=1,又因为BCD=,所以ADC=π,ACD=,所以ACB=,ACBC.因为CF平面ABCD,AC平面ABCD,所以ACCF,CFBC=C,所以AC平面BCF,因为EFAC,所以EF平面BCF. (2)(1)可建立分别以直线CA,CB,CFx,y,z轴的空间直角坐标系如图所示,AD=CD=BC=CF=1,FM=λ(0λ),C(0,0,0),A(,0,0),B(0,1,0),M(λ,0,1),所以=(-,1,0),=(λ,-1,1), n1=(x,y,z)为平面MAB的一个法向量,x=1,n1=(1,,-λ), 因为n2=(1,0,0)是平面FCB的一个法向量,所以cos θ===,因为0λ,所以当λ=0,cos θ有最小值,所以点M与点F重合时,平面MAB与平面FCB所成锐二面角最大,此时二面角的余弦值为.1.在正方体ABCD-A1B1C1D1,EBB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为 (  )A.    B.    C.   D.【解析】选B.A为原点建立如图所示的空间直角坐标系A-xyz,设棱长为1,A1(0,0,1),E1,0,,D(0,1,0),所以=(0,1,-1),=1,0,-,设平面A1ED的一个法向量为n1=(1,y,z),所以所以n1=(1,2,2).因为平面ABCD的一个法向量为n2=(0,0,1),所以cos<n1,n2>==.即所成的锐二面角的余弦值为.2.如图,四棱锥P ?ABCD,底面ABCD是正方形,PD平面ABCDPD=AD=2,E是射线AB上一点,当二面角P-EC-D,AE=              (  )A.1   B.   C.2-   D.2+2【解析】选D.AE=a(a0),以点D为原点,DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,D(0,0,0),C(0,2,0),E(2,a,0),P(0,0,2),=(0,2,-2),=(2,a,-2),设平面PEC的法向量为m=(x,y,z),x∶y∶z=(2-a)∶2∶2,故令m=(2-a,2,2),设平面ECD的法向量为n=(0,0,1),二面角P ?EC ?D的平面角θ=,所以cosθ===,所以a=2+2a=-2+2(舍去),AE=2+2.1.在矩形ABCD,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B的平面角为60°,BD=________________. 【解析】在矩形ABCD,AB=4,BC=3,过点DDEAC于点E,过点BBFAC于点F,||=||==,||=5-2×=.沿对角线AC把矩形折成二面角D-AC-B的平面角为60°,=++,=+++2·+2·+2·=×2++0+0+2×××cos(180°-60°)=.所以,BD=.答案:2.(2019·全国卷Ⅲ)1是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,FBC=60°,将其沿AB,BC折起使得BEBF重合,连接DG,如图2.(1)证明:2中的A,C,G,D四点共面,且平面ABC平面BCGE.(2)求图2中的二面角B-CG-A的大小. 【解析】(1)由已知得ADBE,CGBE,所以ADCG,AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得ABBE,ABBC,BEBC=B,AB平面BCGE.又因为AB平面ABC,所以平面ABC平面BCGE.(2)EHBC,垂足为H.因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC.由已知,菱形BCGE的边长为2,EBC=60°,可求得BH=1,EH=.H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系H-xyz,A(-1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,-1,0).设平面ACGD的法向量为n=(x,y,z),所以可取n=(3,6,-).又平面BCGE的法向量可取为m=(0,1,0),所以cos?n,m?==.因此二面角B-CG-A的大小为30°.考点二 求空间距离 【典例】1.设正方体ABCD-A1B1C1D1的棱长为2,则点D1到平面A1BD的距离是________________. 2.已知斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,ABC=90°,BC=2,AC=2,AA1A1C,AA1=A1C.(1)求这个三棱柱的体积.(2)求顶点C 到侧面A1ABB1的距离. 【解题导思】序号联想解题1在正方体中,求点D1到平面A1BD的距离,首先想到利用向量法.2观察所给图形,想到尝试利用转化法或等体积法.【解析】1.如图建立空间直角坐标系,D1(0,0,2),A1(2,0,2),D(0,0,0),B(2,2,0),所以=(2,0,0),=(2,0,2),=(2,2,0),设平面A1BD的一个法向量n=(x,y,z),.x=1,n=(1,-1,-1),所以点D1到平面A1BD的距离d===.答案:2.(1)AC的中点D,连接A1D,因为AA1A1C,AA1=A1C,AC=2,所以A1DAC,A1D=,又因为侧面A1ACC1与底面ABC垂直,所以A1D底面ABC,所以A1D就是三棱柱的高,因为ABC=90°,BC=2,AC=2,所以AB=2,所以底面积为SABC=×2×2=2,所以三棱柱的体积为V=SABC·A1D=2×=2.(2)等体积法:连接A1B,根据定义,C到面A1ABB1的距离,即为三棱锥C-A1AB的高h,=·h=SABC·A1D,×2h=×2×,所以h=为所求. 求点到平面的距离的常用方法 (1)直接法:P点作平面α的垂线,垂足为Q,PQ放在某个三角形中,解三角形求出PQ的长度就是点P到平面α的距离.(2)转化法:若点P所在的直线l平行于平面α,则转化为直线l上某一个点到平面α的距离来求.(3)等体积法:求点面距离可以转化为求三棱锥的高,如四面体中点A到平面BCD的距离,用等体积法求得h=.(4)向量法:设平面α的一个法向量为n,Aα内任意点,则点Pα的距离为d=.如图,BCDMCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BCD,AB=2,求点A到平面MBC的距离.【解析】如图,CD的中点O,连接OB,OM,因为BCDMCD均为正三角形,所以OBCD,OMCD,又平面MCD平面BCD,所以MO平面BCD.O为坐标原点,直线OC,BO,OM分别为x,y,z,建立空间直角坐标系O-xyz.因为BCDMCD都是边长为2的正三角形,所以OB=OM=,O(0,0,0),C(1,0,0),M(0,0,),B(0,-,0),A(0,-,2),所以=(1,,0),=(0,,).设平面MBC的法向量为n=(x,y,z),x=,可得平面MBC的一个法向量为n=(,-1,1).=(0,0,2),所以所求距离为d==.     

    英语朗读宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map