初中数学26.2 实际问题与反比例函数精品同步测试题
展开一、选择题
1.一个菱形的两条对角线长分别为x,y,其面积为2,则y与x之间的关系用图象表示大致为( )
2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将爆炸,为了安全起见,气体体积应( )
A.不小于m3 B.小于m3 C.不小于m3 D.小于m3
3.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,若以此蓄电池为电源的用电器限制电流不得超过10 A,则此用电器的可变电阻应( )
A.不小于4.8 Ω B.不大于4.8 Ω
C.不小于14 Ω D.不大于14 Ω
4.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数解析式ρ=eq \f(m,V)(m为常数,m≠0),其图象如图所示,则m的值为( )
A.9 B.-9 C.4 D.-4
5.为了更好地保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足解析式:V=Sh(V≠0),则S关于h的函数图象大致是( )
6.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷)与总人口数x(单位:人)的函数图象如图所示,则下列说法正确的是( )
A.该村人均耕地面积随总人口数的增多而增多
B.该村人均耕地面积y与总人口数x成正比例
C.若该村人均耕地面积为2公顷,则总人口数为100人
D.当该村总人口数为50人时,人均耕地面积为1公顷
7.教室里的饮水机接通电源就进入自动程序:开机加热时每分钟上升10 ℃,加热到100 ℃后停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30 ℃时,接通电源后,水温y(℃)和时间x(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50 ℃的水,则接通电源的时间可以是当天上午的( )
A.7:20 B.7:30 C.7:45 D.7:50
8.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( )
A.该村人均耕地面积随总人口的增多而增多
B.该村人均耕地面积y与总人口x成正比例
C.若该村人均耕地面积为2公顷,则总人口有100人
D.当该村总人口为50人时,人均耕地面积为1公顷
二、填空题
9.一辆汽车行驶在一段全程为100千米的高速公路上,那么这辆汽车行完全程所需的时间y(小时)与它的速度x(千米/小时)之间的关系式为y= ________.
10.如图所示是一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数关系图象,若要5小时排完水池中的水,则每小时的排水量应为________m3.
11.收音机刻度盘的波长λ和频率f分别是用米和千赫兹为单位标刻的,波长λ和频率f满足解析式f=eq \f(300000,λ),这说明波长λ越大,频率f就越________.
12.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图K-5-5所示,则当力为20牛时,此物体在力的方向上移动的距离是________米.
13.李老师参加了某电脑公司推出的分期付款(无利息)购买电脑活动,他购买的电脑价格为9800元,交了首付之后每月付款y元,x个月结清余款,y与x满足如图的函数解析式,通过以上信息可知李老师的首付款为________.
14.实验表明,当导线的长度一定时,导线的电阻与它的横截面积成反比例.一条长为100cm的导线的电阻R(Ω)与它的横截面积S(cm2)的函数图象如图所示,那么,其函数关系式为__________,当S=2cm2时,R=________Ω.
15.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y(mg)与时间x(分)的函数关系如图所示.已知药物燃烧阶段,y与x成正比例,燃烧完后,y与x成反比例.现测得药物10分钟燃烧完,此时教室内每立方米空气的含药量为8 mg.当每立方米空气中的含药量低于1.6 mg时,对人体才能无毒害作用.那么从消毒开始,经过________分钟后教室内的空气才能达到安全要求.
三、解答题
16.某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.
(1)求鱼塘的长y(米)关于宽x(米)的函数解析式;
(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米时,鱼塘的长是多少米?
17.某地上年度电价为0.8元/度,年用电量为1亿度,本年度计划将电价调至0.55~0.75元/度之间,经测算,若电价调至x元/度,则本年度新增用电量y(亿度)与(x-0.4)成反比例.又知当x=0.65时,y=0.8.
(1)求y与x之间的函数解析式;
(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]
18.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图,根据题中相关信息回答下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
19.一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).
(1)求k和m的值;
(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?
20.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.
(1)求这一函数的解析式;
(2)当气体体积为1m3时,气压是多少?
(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)
21.某公司将“丽水山耕”农副产品运往杭州市场进行销售.记汽车的行驶时间为t小时,平均速度为v千米/时(汽车行驶速度不超过100千米/时).根据经验,v,t的一组对应值如下表:
(1)根据表中的数据,求出平均速度v(千米/时)关于行驶时间t(时)的函数解析式;
(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;
(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.
参考答案
LISTNUM OutlineDefault \l 3 \s 1 C.
LISTNUM OutlineDefault \l 3 C.
LISTNUM OutlineDefault \l 3 答案为:A
LISTNUM OutlineDefault \l 3 答案为:A
LISTNUM OutlineDefault \l 3 答案为:C
LISTNUM OutlineDefault \l 3 答案为:D
LISTNUM OutlineDefault \l 3 A
LISTNUM OutlineDefault \l 3 D
LISTNUM OutlineDefault \l 3 答案为: SKIPIF 1 < 0 ;
LISTNUM OutlineDefault \l 3 略
LISTNUM OutlineDefault \l 3 答案为:小
LISTNUM OutlineDefault \l 3 答案为:36
LISTNUM OutlineDefault \l 3 答案为:3800元
LISTNUM OutlineDefault \l 3 答案为:y=29x-1,14.5.
LISTNUM OutlineDefault \l 3 答案为:50
LISTNUM OutlineDefault \l 3 解:(1)由长方形鱼塘的面积为2000平方米,得到xy=2000,即y=eq \f(2000,x).
(2)当x=20时,y=eq \f(2000,20)=100.
答:当鱼塘的宽是20米时,鱼塘的长是100米.
LISTNUM OutlineDefault \l 3 解:(1)∵本年度新增用电量y(亿度)与(x-0.4)成反比例关系,
∴设y=eq \f(k,x-0.4)(k为常数,且k≠0).
∵当电价为0.65元/度时,新增用电量是0.8亿度,
∴0.8=eq \f(k,0.65-0.4),解得k=0.2,
∴y=eq \f(0.2,x-0.4)=eq \f(1,5x-2).
(2)设当电价调至x元/度时,本年度电力部门的收益将比上年度增加20%.
根据题意,得(0.8-0.3)×1×(1+20%)=(eq \f(1,5x-2)+1)(x-0.3),
解得x=0.6或x=0.5(舍去).
故若每度电的成本价为0.3元,则当电价调至0.6元/度时,
本年度电力部门的收益将比上年度增加20%.
LISTNUM OutlineDefault \l 3 (1)因为爆炸前浓度呈直线型增加,
所以可设y与x的函数关系式为 SKIPIF 1 < 0
由图象知 SKIPIF 1 < 0 过点(0,4)与(7,46)
∴ SKIPIF 1 < 0 .解得 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,此时自变量 SKIPIF 1 < 0 的取值范围是0≤ SKIPIF 1 < 0 ≤7.
(不取 SKIPIF 1 < 0 =0不扣分, SKIPIF 1 < 0 =7可放在第二段函数中)
因为爆炸后浓度成反比例下降,
所以可设y与x的函数关系式为 SKIPIF 1 < 0 .[
由图象知 SKIPIF 1 < 0 过点(7,46),
∴ SKIPIF 1 < 0 . ∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,此时自变量 SKIPIF 1 < 0 的取值范围是 SKIPIF 1 < 0 >7.
(2)当 SKIPIF 1 < 0 =34时,由 SKIPIF 1 < 0 得,6 SKIPIF 1 < 0 +4=34, SKIPIF 1 < 0 =5 .
∴撤离的最长时间为7-5=2(小时).
∴撤离的最小速度为3÷2=1.5(km/h).
(3)当 SKIPIF 1 < 0 =4时,由 SKIPIF 1 < 0 得, SKIPIF 1 < 0 =80.5,80.5-7=73.5(小时).
∴矿工至少在爆炸后73.5小时能才下井.
LISTNUM OutlineDefault \l 3 略
LISTNUM OutlineDefault \l 3 解:(1)设,由题意知,所以k=96,故;
(2)当v=1m3时,;
(3)当p=140kPa时,.
所以为了安全起见,气体的体积应不少于0.69m3.
LISTNUM OutlineDefault \l 3 解:(1)根据表中的数据,可画出v关于t的函数图象(如图所示).
根据图象形状,选择反比例函数模型进行尝试.设v关于t的函数解析式为v=eq \f(k,t),
∵当v=75时,t=4,
∴k=4×75=300.
∴v=eq \f(300,t).
将点(3.75,80),(3.53,85),(3.33,90),(3.16,95)的坐标代入v=eq \f(300,t),
验证:eq \f(300,80)=3.75,eq \f(300,85)≈3.53,eq \f(300,90)≈3.33,eq \f(300,95)≈3.16,
∴v关于t的函数解析式是v=eq \f(300,t)(t≥3).
(2)不能.理由:∵10-7.5=2.5,∴当t=2.5时,v=eq \f(300,2.5)=120>100.
∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.
(3)由图象或反比例函数的性质得,
当3.5≤t≤4时,75≤v≤eq \f(600,7).
即平均速度v的取值范围是75≤v≤eq \f(600,7).
人教版九年级下册26.2 实际问题与反比例函数课时练习: 这是一份人教版九年级下册26.2 实际问题与反比例函数课时练习,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
人教版九年级下册26.2 实际问题与反比例函数同步达标检测题: 这是一份人教版九年级下册26.2 实际问题与反比例函数同步达标检测题,共12页。
数学人教版26.2 实际问题与反比例函数优秀课时训练: 这是一份数学人教版26.2 实际问题与反比例函数优秀课时训练,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。