高中数学椭圆中的经典结论学案
展开高中数学中椭圆的经典结论(一)点P处的切线PT平分△PF1F2在点P处的外角.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.以焦点弦PQ为直径的圆必与对应准线相离.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.若在椭圆上,则过的椭圆的切线方程是.若在椭圆外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.椭圆 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点,则椭圆的焦点角形的面积为.椭圆(a>b>0)的焦半径公式:,( , ).设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF.过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.AB是椭圆的不平行于对称轴的弦,M为AB的中点,则,即。若在椭圆内,则被Po所平分的中点弦的方程是.若在椭圆内,则过Po的弦中点的轨迹方程. 高中数学中椭圆的经典结论(二)椭圆(a>b>o)的两个顶点为,,与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是. 过椭圆 (a>0, b>0)上任一点任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且(常数). 若P为椭圆(a>b>0)上异于长轴端点的任一点,F1, F 2是焦点, , ,则. 设椭圆(a>b>0)的两个焦点为F1、F2,P(异于长轴端点)为椭圆上任意一点,在△PF1F2中,记, ,,则有. 若椭圆(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0<e≤时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项. P为椭圆(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则,当且仅当三点共线时,等号成立. 椭圆与直线有公共点的充要条件是. 已知椭圆(a>b>0),O为坐标原点,P、Q为椭圆上两动点,且.则(1);(2)|OP|2+|OQ|2的最大值为;(3)的最小值是.