高中数学人教版新课标A必修11.1.3集合的基本运算获奖教案
展开课题:§1.3集合的基本运算
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课 型:新授课
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
教学过程:
一、 引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。
二、 新课教学
- 并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B 读作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn图表示:
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P9-10例4、例5)
说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
- 交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题(P9-10例6、例7)
拓展:求下列各图中集合A与B的并集与交集
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
- 补集
全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。
补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,
记作:CUA
即:CUA={x|x∈U且x∈A}
补集的Venn图表示
说明:补集的概念必须要有全集的限制
例题(P12例8、例9)
- 求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。
- 集合基本运算的一些结论:
A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A
AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A
(CUA)∪A=U,(CUA)∩A=
若A∩B=A,则AB,反之也成立
若A∪B=B,则AB,反之也成立
若x∈(A∩B),则x∈A且x∈B
若x∈(A∪B),则x∈A,或x∈B
- 课堂练习
(1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B=
(2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z
三、 归纳小结(略)
四、 作业布置
1、 书面作业:P13习题1.1,第6-12题
2、 提高内容:
(1) 已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且
,试求p、q;
(2) 集合A={x|x2+px-2=0},B={x|x2-x+q=0},若AB={-2,0,1},求p、q;
(3) A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB ={3,7},求B
必修12.2.2对数函数及其性质一等奖教学设计: 这是一份必修12.2.2对数函数及其性质一等奖教学设计,共3页。
人教版新课标A必修12.2.2对数函数及其性质一等奖教学设计: 这是一份人教版新课标A必修12.2.2对数函数及其性质一等奖教学设计,共5页。
高中人教版新课标A2.1.2指数函数及其性质获奖教学设计: 这是一份高中人教版新课标A2.1.2指数函数及其性质获奖教学设计,共3页。