高中数学人教版新课标A必修13.1.1方程的根与函数的零点优秀教学设计及反思
展开课题:§3.1.1方程的根与函数的零点
教学目标:
知识与技能 理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.
过程与方法 零点存在性的判定.
情感、态度、价值观 在函数与方程的联系中体验数学中的转化思想的意义和价值.
教学重点:
重点 零点的概念及存在性的判定.
难点 零点的确定.
教学程序与环节设计:
教学过程与操作设计:
环节 | 教学内容设置 | 师生双边互动 |
创
设
情
境 | 先来观察几个具体的一元二次方程的根及其相应的二次函数的图象: 方程与函数 方程与函数 方程与函数
| 师:引导学生解方程,画函数图象,分析方程的根与图象和轴交点坐标的关系,引出零点的概念.
生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.
师:上述结论推广到一般的一元二次方程和二次函数又怎样? |
组
织
探
究 | 函数零点的概念: 对于函数,把使成立的实数叫做函数的零点.
函数零点的意义: 函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标. 即: 方程有实数根函数的图象与轴有交点函数有零点.
函数零点的求法: 求函数的零点: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. |
师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.
生:认真理解函数零点的意义,并根据函数零点的意义探索其求法: 代数法; 几何法. |
二次函数的零点: 二次函数 . 1)△>0,方程有两不等 | 师:引导学生运用函数零点的意义探索二次函数零点的情况. | |
环节 | 教学内容设置 | 师生双边互动 |
组
织
探
究 | 实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
| 生:根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论. |
零点存在性的探索: (Ⅰ)观察二次函数的图象: 在区间上有零点______; _______,_______, ·_____0(<或>). 在区间上有零点______; ·____0(<或>). (Ⅱ)观察下面函数的图象 在区间上______(有/无)零点; ·_____0(<或>). 在区间上______(有/无)零点; ·_____0(<或>). 在区间上______(有/无)零点; ·_____0(<或>).
由以上两步探索,你可以得出什么样的结论?
怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点. |
生:分析函数,按提示探索,完成解答,并认真思考.
师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.
生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析.
师:引导学生理解函数零点存在定理,分析其中各条件的作用. | |
环节 | 教学内容设置 | 师生互动设计 |
例 题 研 究 | 例1.求函数的零点个数. 问题: 1)你可以想到什么方法来判断函数零点个数? 2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性?
例2.求函数,并画出它的大致图象. | 师:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识.
生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用函数单调性判断零点的个数. |
尝 试 练 习 | 1.利用函数图象判断下列方程有没有根,有几个根: (1); (2); (3); (4). 2.利用函数的图象,指出下列函数零点所在的大致区间: (1); (2); (3); (4). |
师:结合图象考察零点所在的大致区间与个数,结合函数的单调性说明零点的个数;让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的重要作用. |
探 究 与 发 现 |
1.已知,请探究方程的根.如果方程有根,指出每个根所在的区间(区间长度不超过1).
2.设函数. (1)利用计算机探求和时函数的零点个数; (2)当时,函数的零点是怎样分布的?
|
|
环节 | 教学内容设置 | 师生互动设计 |
作 业 回 馈 | 1. 教材P108习题3.1(A组)第1、2题; 2. 求下列函数的零点: (1); (2); (3) . 3. 求下列函数的零点,图象顶点的坐标,画出各自的简图,并指出函数值在哪些区间上大于零,哪些区间上小于零: (1); (2). 4. 已知: (1)为何值时,函数的图象与轴有两个零点; (2)如果函数至少有一个零点在原点右侧,求的值. 5. 求下列函数的定义域: (1); (2); (3) |
|
课 外 活 动 | 研究,, ,的相互关系,以零点作为研究出发点,并将研究结果尝试用一种系统的、简洁的方式总结表达. |
考虑列表,建议画出图象帮助分析. |
收 获 与 体 会 | 说说方程的根与函数的零点的关系,并给出判定方程在某个区产存在根的基本步骤. |
|
必修12.2.2对数函数及其性质一等奖教学设计: 这是一份必修12.2.2对数函数及其性质一等奖教学设计,共3页。
人教版新课标A必修12.2.2对数函数及其性质一等奖教学设计: 这是一份人教版新课标A必修12.2.2对数函数及其性质一等奖教学设计,共5页。
高中人教版新课标A2.1.2指数函数及其性质获奖教学设计: 这是一份高中人教版新课标A2.1.2指数函数及其性质获奖教学设计,共3页。