

人教版新课标A必修12.3 幂函数公开课教案及反思
展开
这是一份人教版新课标A必修12.3 幂函数公开课教案及反思,共5页。
课题:§2.3幂函数教学目标: 知识与技能 通过具体实例了解幂函数的图象和性质,并能进行简单的应用. 过程与方法 能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质. 情感、态度、价值观 体会幂函数的变化规律及蕴含其中的对称性. 教学重点:重点 从五个具体幂函数中认识幂函数的一些性质.难点 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 教学程序与环节设计:
教学过程与操作设计:环节教学内容设计师生双边互动创 设 情 境阅读教材P90的具体实例(1)~(5),思考下列问题:1.它们的对应法则分别是什么?2.以上问题中的函数有什么共同特征?(答案)1.(1)乘以1;(2)求平方;(3)求立方;(4)开方;(5)取倒数(或求-1次方).2.上述问题中涉及到的函数,都是形如的函数,其中是自变量,是常数.生:独立思考完成引例. 师:引导学生分析归纳概括得出结论. 师生:共同辨析这种新函数与指数函数的异同.组 织 探 究材料一:幂函数定义及其图象.一般地,形如的函数称为幂函数,其中为常数.下面我们举例学习这类函数的一些性质.作出下列函数的图象:(1);(2);(3);(4);(5). [解] 列表(略) 图象 师:说明:幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析. 生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律. 师:引导学生应用画函数的性质画图象,如:定义域、奇偶性. 师生共同分析,强调画图象易犯的错误.环节教学内容设计师生双边互动组 织 探 究材料二:幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律. 生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表.材料三:观察与思考 观察图象,总结填写下表: 定义域 值域 奇偶性 单调性 定点 材料五:例题[例1](教材P92例题) [例2] 比较下列两个代数值的大小:(1),(2), [例3] 讨论函数的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性. 师:引导学生回顾讨论函数性质的方法,规范解题格式与步骤.并指出函数单调性是判别大小的重要工具,幂函数的图象可以在单调性、奇偶性基础上较快描出. 生:独立思考,给出解答,共同讨论、评析.环节呈现教学材料师生互动设计尝试练习1.利用幂函数的性质,比较下列各题中两个幂的值的大小:(1),;(2),;(3),;(4),.2.作出函数的图象,根据图象讨论这个函数有哪些性质,并给出证明.3.作出函数和函数的图象,求这两个函数的定义域和单调区间.4.用图象法解方程:(1); (2). 探究与发现 1.如图所示,曲线是幂函数在第一象限内的图象,已知分别取四个值,则相应图象依次为: . 2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?(1)和;(2)和. 规律1:在第一象限,作直线,它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列. 规律2:幂指数互为倒数的幂函数在第一象限内的图象关于直线对称.作业回馈1.在函数中,幂函数的个数为:A.0 B.1 C.2 D.3 环节呈现教学材料师生互动设计 2.已知幂函数的图象过点,试求出这个函数的解析式.3.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R与管道半径r的四次方成正比.(1)写出函数解析式;(2)若气体在半径为3cm的管道中,流量速率为400cm3/s,求该气体通过半径为r的管道时,其流量速率R的表达式;(3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率.4.1992年底世界人口达到54.8亿,若人口的平均增长率为x%,2008年底世界人口数为y(亿),写出:(1)1993年底、1994年底、2000年底的世界人口数;(2)2008年底的世界人口数y与x的函数解析式. 课外活动利用图形计算器探索一般幂函数的图象随的变化规律. 收获与体会1.谈谈五个基本幂函数的定义域与对应幂函数的奇偶性、单调性之间的关系? 2.幂函数与指数函数的不同点主要表现在哪些方面?
相关教案
这是一份必修12.2.2对数函数及其性质一等奖教学设计,共3页。
这是一份人教版新课标A必修12.2.2对数函数及其性质一等奖教学设计,共5页。
这是一份高中人教版新课标A2.1.2指数函数及其性质获奖教学设计,共3页。
