初中数学湘教版八年级下册2.2.2平行四边形的判定授课课件ppt
展开第1课时 利用边的关系判定 平行四边形
1.通过自学阅读、操作、猜想、讨论,能够得到“一组对边平行且相等的四边形是平行四边形”这一判定定理,并能初步应用.2.在理解平行四边形性质的基础上,经过画图、猜想、推理,能够得到“两组对边分别相等的四边形是平行四边形”这一判定定理,并会初步应用.
目标一 理解并会用“一组对边平行且相等的四边形是平行四边形”
例1 教材例5针对训练 如图2-2-9,已知BE∥DF,∠ADF=∠CBE,AF=CE.求证:四边形DEBF是平行四边形.
[解析] 已知BE∥DF,所以只要通过证明△ADF≌△CBE,从而推出BE=DF,即可利用一组对边平行且相等的四边形是平行四边形来证明.
证明:因为BE∥DF,所以∠AFD=∠CEB.又因为∠ADF=∠CBE,AF=CE,所以△ADF≌△CBE,所以DF=BE.又因为BE∥DF,所以四边形DEBF是平行四边形.
【归纳总结】 如果已知条件中有一组对边平行,可以尝试证明这一组对边相等(或另一组对边平行),利用“一组对边平行且相等的四边形是平行四边形”(或定义)证明该四边形是平行四边形.
目标二 理解并会用“两组对边分别相等的四边形是平行四边形”
例2 教材例6针对训练 如图2-2-10,分别以△ABC(∠BAC≠60°)的三边为边长,在BC的同侧作等边三角形ABD,等边三角形BCE,等边三角形ACF,连接DE,EF.求证:四边形ADEF是平行四边形.
[解析] 证△EDB≌△CAB与△CFE≌△CAB可得BD=EF=DA,ED=CF=FA,所以ED=FA,EF=DA,所以四边形ADEF是平行四边形.
证明:因为△ABD,△BCE,△ACF均为等边三角形,所以BA=BD=DA,EB=CB=CE,CF=FA=AC,∠DBA=∠EBC=60°,所以∠DBE+∠EBA=∠ABC+∠EBA=60°,所以∠DBE=∠ABC.在△EDB与△CAB中,因为BD=BA,∠DBE=∠ABC,EB=CB,所以△EDB≌△CAB.同理可证△CFE≌△CAB,所以△EDB≌△CFE,所以BD=EF=DA,ED=CF=FA,所以ED=FA,EF=DA,所以四边形ADEF是平行四边形.
【归纳总结】 若已知条件中有一组对边相等,则可以尝试证明另一组对边也相等或证明这一组对边平行,从而证明该四边形是平行四边形.
知识点一 平行四边形的判定定理1
一组对边________且________的四边形是平行四边形.用几何语言叙述:在四边形ABCD中,若AB∥CD且AB=CD,则四边形ABCD是平行四边形.
知识点二 平行四边形的判定定理2
两组对边分别________的四边形是平行四边形.用几何语言叙述:在四边形ABCD中,若AB=CD且AD=BC,则四边形ABCD是平行四边形.
[点拨] 连接一条对角线,利用全等三角形的判定与性质即可证明该定理.
如图2-2-11,在▱ABCD中,E是AB的中点,F是CD的中点.求证:四边形AECF是平行四边形.请你判断下面的证明过程是否正确,并说明理由.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵E,F分别是AB,CD的中点,∴DF=BE.又∵∠D=∠B,AD=CB,∴△ADF≌△CBE,∴AF=CE.又∵AE∥CF,∴四边形AECF是平行四边形.
初中数学2.2.2平行四边形的判定优质ppt课件: 这是一份初中数学2.2.2平行四边形的判定优质ppt课件,文件包含湘教版八下数学222平行四边形的判定2课件pptx、湘教版八下数学222平行四边形的判定2教案docx等2份课件配套教学资源,其中PPT共24页, 欢迎下载使用。
初中数学湘教版八年级下册2.2.2平行四边形的判定完美版课件ppt: 这是一份初中数学湘教版八年级下册2.2.2平行四边形的判定完美版课件ppt,文件包含湘教版八下数学222平行四边形的判定1课件pptx、湘教版八下数学222平行四边形的判定1教案docx等2份课件配套教学资源,其中PPT共23页, 欢迎下载使用。
2021学年2.2.2平行四边形的判定授课ppt课件: 这是一份2021学年2.2.2平行四边形的判定授课ppt课件,共16页。PPT课件主要包含了一·复习回顾,符号语言,归纳总结形成理论,从边看,两组对边分别平行,两组对边分别相等,一组对边平行且相等等内容,欢迎下载使用。