所属成套资源:2021中考数学一轮复习集合
- 全国各省市中考数学压轴题精选精析 (2) 试卷 1 次下载
- 中考数学压轴题及答案40例第4部分 试卷 2 次下载
- 中考数学压轴题及答案40例第7部分 试卷 2 次下载
- 中考数学压轴题大集合 试卷 1 次下载
- 中考数学压轴综合题(精华20题)WORD打印版 试卷 2 次下载
中考数学压轴题及答案40例第2部分
展开中考数学压轴题及答案40例(2)5.如图,在直角坐标系中,点为函数在第一象限内的图象上的任一点,点的坐标为,直线过且与轴平行,过作轴的平行线分别交轴,于,连结交轴于,直线交轴于.(1)求证:点为线段的中点;(2)求证:①四边形为平行四边形;②平行四边形为菱形;(3)除点外,直线与抛物线有无其它公共点?并说明理由.(08江苏镇江28题解析)(1)法一:由题可知.,,.··································································(1分),即为的中点.·······················································(2分)法二:,,.························································(1分)又轴,.····························································(2分)(2)①由(1)可知,,,,.··································································(3分),又,四边形为平行四边形.·············································(4分)②设,轴,则,则.过作轴,垂足为,在中,.平行四边形为菱形.···················································(6分)(3)设直线为,由,得,代入得: 直线为.···························································(7分)设直线与抛物线的公共点为,代入直线关系式得:,,解得.得公共点为.所以直线与抛物线只有一个公共点.······································(8分)6.如图13,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.(1)求m的值及该抛物线对应的函数关系式;(2)求证:① CB=CE ;② D是BE的中点;(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.(1)∵ 点B(-2,m)在直线y=-2x-1上,∴ m=-2×(-2)-1=3. ………………………………(2分)∴ B(-2,3)∵ 抛物线经过原点O和点A,对称轴为x=2,∴ 点A的坐标为(4,0) . 设所求的抛物线对应函数关系式为y=a(x-0)(x-4). ……………………(3分)将点B(-2,3)代入上式,得3=a(-2-0)(-2-4),∴ .∴ 所求的抛物线对应的函数关系式为,即. (6分) (2)①直线y=-2x-1与y轴、直线x=2的交点坐标分别为D(0,-1) E(2,-5). 过点B作BG∥x轴,与y轴交于F、直线x=2交于G, 则BG⊥直线x=2,BG=4. 在Rt△BGC中,BC=.∵ CE=5,∴ CB=CE=5. ……………………(9分)②过点E作EH∥x轴,交y轴于H,则点H的坐标为H(0,-5).又点F、D的坐标为F(0,3)、D(0,-1),∴ FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°. ∴ △DFB≌△DHE (SAS),∴ BD=DE.即D是BE的中点. ………………………………(11分) (3) 存在. ………………………………(12分) 由于PB=PE,∴ 点P在直线CD上,∴ 符合条件的点P是直线CD与该抛物线的交点. 设直线CD对应的函数关系式为y=kx+b. 将D(0,-1) C(2,0)代入,得. 解得 . ∴ 直线CD对应的函数关系式为y=x-1.∵ 动点P的坐标为(x,),∴ x-1=. ………………………………(13分)解得 ,. ∴ ,.∴ 符合条件的点P的坐标为(,)或(,).…(14分)(注:用其它方法求解参照以上标准给分.)7.如图,在平面直角坐标系中,抛物线=-++经过A(0,-4)、B(,0)、 C(,0)三点,且-=5.(1)求、的值;(4分)(2)在抛物线上求一点D,使得四边形BDCE是以BC为对 角线的菱形;(3分)(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解: (解析)解:(1)解法一:∵抛物线=-++经过点A(0,-4), ∴=-4 ……1分又由题意可知,、是方程-++=0的两个根,∴+=, =-=6······················································2分由已知得(-)=25又(-)=(+)-4=-24∴ -24=25 解得=± ···························································3分当=时,抛物线与轴的交点在轴的正半轴上,不合题意,舍去.∴=-. ···························································4分 解法二:∵、是方程-++c=0的两个根, 即方程2-3+12=0的两个根.∴=,·······················································2分∴-==5, 解得 =±··························································3分 (以下与解法一相同.) (2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 5分 又∵=---4=-(+)+ ·············································6分 ∴抛物线的顶点(-,)即为所求的点D.·······························7分 (3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),根据菱形的性质,点P必是直线=-3与抛物线=---4的交点, ···········································8分 ∴当=-3时,=-×(-3)-×(-3)-4=4, ∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形. ·············9分 四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(-3,3),但这一点不在抛物线上. 10分 8.已知:如图14,抛物线与轴交于点,点,与直线相交于点,点,直线与轴交于点.(1)写出直线的解析式.(2)求的面积.(3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动.设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?(解析)解:(1)在中,令,,·······································1分又点在上的解析式为························································2分(2)由,得 ······················································4分,,·······························································5分·································································6分(3)过点作于点·································································7分·································································8分由直线可得:在中,,,则,·······························································9分································································10分································································11分此抛物线开口向下,当时,当点运动2秒时,的面积达到最大,最大为.····························12分