还剩13页未读,
继续阅读
所属成套资源:2020届高三高考物理二轮复习专题强化练习
成套系列资料,整套一键下载
2020届高考物理二轮复习卷:机械能守恒定律
展开
机械能守恒定律
一、选择题(1~8题为单项选择题,9~15题为多项选择题)
1.一轻绳系住一质量为m的小球悬挂在O点,在最低点先给小球一水平初速度,小球恰能在竖直平面内绕O点做圆周运动,若在水平半径OP的中点A处钉一枚光滑的钉子,仍在最低点给小球同样的初速度,则小球向上通过P点后将绕A点做圆周运动,则到达最高点N时,绳子的拉力大小为 ( )
A.0 B.2mg C.3mg D.4mg
2.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,重力加速度为g,不计空气阻力,则小球B下降h时的速度为( )
A. B. C. D.
3.如图所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是( )
A.斜劈对小球的弹力不做功 B.斜劈与小球组成的系统机械能守恒
C.斜劈的机械能守恒 D.小球重力势能减少量等于斜劈动能的增加量
4.用长为L的细线系着一个质量为m的小球(可以看做质点),以细线端点O为圆心,在竖直平面内做圆周运动。P点和Q点分别为轨迹的最低点和最高点,不考虑空气阻力,小球经过P点和Q点时所受细线拉力的差值为( )
A.2mg B.4mg C.6mg D.8mg
5.将一小球从高处水平抛出,最初2 s内小球动能Ek随时间t变化的图象如图3所示,不计空气阻力,g取10 m/s2。根据图象信息,不能确定的物理量是( )
A.小球的质量
B.小球的初速度
C.最初2 s内重力对小球做功的平均功率
D.小球抛出时的高度
6.蹦极是一项非常刺激的户外休闲活动.北京青龙峡蹦极跳塔高度为68米,身系弹性蹦极绳的蹦极运动员从高台跳下,下落高度大约为50米.假定空气阻力可忽略,运动员可视为质点.下列说法正确的是( )
A.运动员到达最低点前加速度先不变后增大
B.蹦极过程中,运动员的机械能守恒
C.蹦极绳张紧后的下落过程中,动能一直减小
D.蹦极绳张紧后的下落过程中,弹力一直增大
7.关于机械能守恒,下列说法中正确的是( )
A.物体做匀速运动,其机械能一定守恒
B.物体所受合力不为零,其机械能一定不守恒
C.物体所受合力做功不为零,其机械能一定不守恒
D.物体沿竖直方向向下做加速度为5 m/s2的匀加速运动,其机械能减少
8.将一个物体以初动能E0竖直向上抛出,落回地面时物体的动能为.设空气阻力恒定,如果将它以初动能4E0竖直上抛,则它在上升到最高点的过程中,重力势能变化了( )
A.3E0 B.2E0
C.1.5E0 D.E0
9.如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动。小环从最高点A滑到最低点B的过程中,小环线速度大小的平方v2随下落高度h的变化图象可能是( )
10.将质量分别为m和2m的两个小球A和B,用长为2L的轻杆相连,如图所示,在杆的中点O处有一固定水平转动轴,把杆置于水平位置后由静止自由释放,在B球顺时针转动到最低位置的过程中(不计一切摩擦)( )
A.A、B两球的线速度大小始终不相等 B.重力对B球做功的瞬时功率先增大后减小
C.B球转动到最低位置时的速度大小为 D.杆对B球做正功,B球机械能不守恒
11.2022年第24届冬季奥林匹克运动会将在北京举行,跳台滑雪是冬奥会的比赛项目之一。如图所示为一简化后的跳台滑雪的雪道示意图,运动员从O点由静止开始,在不借助其他外力的情况下,自由滑过一段圆心角为60°的光滑圆弧轨道后从A点水平飞出,然后落到斜坡上的B点。已知A点是斜坡的起点,光滑圆弧轨道半径为40 m,斜坡与水平面的夹角θ=30°,运动员的质量m=50 kg,重力加速度g=10 m/s2,忽略空气阻力。下列说法正确的是( )
A.运动员从O点运动到B点的整个过程中机械能守恒
B.运动员到达A点时的速度为20 m/s
C.运动员到达B点时的动能为10 kJ
D.运动员从A点飞出到落到B点所用的时间为 s
12.如图所示,竖直面内光滑的圆形导轨固定在一水平地面上,半径为R.一个质量为m的小球从距水平地面正上方h高处的P点由静止开始自由下落,恰好从N点沿切线方向进入圆轨道.不考虑空气阻力,则下列说法正确的是( )
A.适当调整高度h,可使小球从轨道最高点M飞出后,恰好落在轨道右端口N处
B.若h=2R,则小球在轨道最低点对轨道的压力为5mg
C.只有h大于等于2.5R时,小球才能到达圆轨道的最高点M
D.若h=R,则小球能上升到圆轨道左侧离地高度为R的位置,该过程重力做功为mgR
13.把质量是0.2 kg的小球放在竖立的弹簧上,并把球往下按至A的位置,如图甲所示.迅速松手后,弹簧把球弹起,球升至最高位置C(图丙).途中经过位置B时弹簧正好处于自由状态(图乙).已知B、A的高度差为0.1 m,C、B的高度差为 0.2 m,弹簧的质量和空气阻力都可以忽略,重力加速度g=10 m/s2.则下列说法正确的是( )
A.小球从A上升至B的过程中,弹簧的弹性势能一直减小,小球的动能一直增加
B.小球从B上升到C的过程中,小球的动能一直减小,势能一直增加
C.小球在位置A时,弹簧的弹性势能为0.6 J
D.小球从位置A上升至C的过程中,小球的最大动能为 0.4 J
二、非选择题
14.质量分别为m和2m的两个小球P和Q,中间用轻质杆固定连接,杆长为L,在离P球处有一个光滑固定轴O,如图10所示。现在把杆置于水平位置后自由释放,在Q球顺时针摆动到最低位置时,求:
(1)小球P的速度大小;
(2)在此过程中小球P机械能的变化量。
15.如图所示,质量为3 kg小球A和质量为5 kg的B通过一压缩弹簧锁定在一起,静止于光滑平台上,解除锁定,两小球在弹力作用下分离,A球分离后向左运动恰好通过半径R=0.5 m的光滑半圆轨道的最高点,B球分离后从平台上以速度vB=3 m/s水平抛出,恰好落在临近平台的一倾角为α的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8 m,g=10 m/s2,求:
(1)A、B两球刚分离时A的速度大小;
(2)弹簧锁定时的弹性势能;
(3)斜面的倾角α。
16.如图所示,质量为m=2 kg的小球以初速度v0沿光滑的水平面飞出后,恰好无碰撞地从A点进入竖直平面内的光滑圆弧轨道,其中B点为圆弧轨道的最低点,C点为圆弧轨道的最高点,圆弧AB对应的圆心角θ=53°,圆半径R=0.5 m.若小球离开水平面运动到A点所用时间t=0.4 s,求:(sin 53°=0.8,cos 53°=0.6,g取10 m/s2)
(1)小球沿水平面飞出的初速度v0的大小.
(2)到达B点时,小球对圆弧轨道的压力大小.
(3)小球能否通过圆弧轨道的最高点C?说明原因.
答案解析
一、选择题(1~8题为单项选择题,9~15题为多项选择题)
1.一轻绳系住一质量为m的小球悬挂在O点,在最低点先给小球一水平初速度,小球恰能在竖直平面内绕O点做圆周运动,若在水平半径OP的中点A处钉一枚光滑的钉子,仍在最低点给小球同样的初速度,则小球向上通过P点后将绕A点做圆周运动,则到达最高点N时,绳子的拉力大小为 ( )
A.0 B.2mg C.3mg D.4mg
【答案】 C
【解析】 恰能做圆周运动,则在最高点有
mg=,
解得v=。
由机械能守恒定律可知
mg2R=mv-mv2,
解得初速度v0=,根据机械能守恒,在最高点N的速度为v′,则:
mgR=mv-mv′2
根据向心力公式:T+mg=,
联立得T=3mg。故选项C正确。
2.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,重力加速度为g,不计空气阻力,则小球B下降h时的速度为( )
A. B. C. D.
【答案】 A
【解析】 根据系统机械能守恒得,对A下降h的过程有mgh=Ep,对B下降h的过程有3mgh=Ep+×3mv2,解得v=,只有选项A正确。
3.如图所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是( )
A.斜劈对小球的弹力不做功 B.斜劈与小球组成的系统机械能守恒
C.斜劈的机械能守恒 D.小球重力势能减少量等于斜劈动能的增加量
【答案】B.
【解析】:不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球的重力做功,小球重力势能减少量等于斜劈和小球的动能增加量,系统机械能守恒,B正确,C、D错误;斜劈对小球的弹力与小球位移间夹角大于90°,故弹力做负功,A错误.
4.用长为L的细线系着一个质量为m的小球(可以看做质点),以细线端点O为圆心,在竖直平面内做圆周运动。P点和Q点分别为轨迹的最低点和最高点,不考虑空气阻力,小球经过P点和Q点时所受细线拉力的差值为( )
A.2mg B.4mg C.6mg D.8mg
【答案】 C
【解析】 根据牛顿第二定律,在Q点,有F1+mg=m,在P点,有F2-mg=m,从最高点到最低点过程,根据机械能守恒定律,有mg·(2L)=mv-mv,联立三式,解得小球经过P点和Q点时所受细线拉力的差值为F2-F1=6mg,C正确。
5.将一小球从高处水平抛出,最初2 s内小球动能Ek随时间t变化的图象如图3所示,不计空气阻力,g取10 m/s2。根据图象信息,不能确定的物理量是( )
A.小球的质量
B.小球的初速度
C.最初2 s内重力对小球做功的平均功率
D.小球抛出时的高度
【答案】 D
【解析】 由机械能守恒定律可得Ek=Ek0+mgh,又h=gt2,所以Ek=Ek0+mg2t2。当t=0时,Ek0=mv=5 J,当t=2 s时,Ek=Ek0+2mg2=30 J,联立方程解得m=0.125 kg,v0=4 m/s。当t=2 s时,由动能定理得WG=ΔEk=25 J,故==12.5 W。根据图象信息,无法确定小球抛出时离地面的高度。综上所述,应选D。
6.蹦极是一项非常刺激的户外休闲活动.北京青龙峡蹦极跳塔高度为68米,身系弹性蹦极绳的蹦极运动员从高台跳下,下落高度大约为50米.假定空气阻力可忽略,运动员可视为质点.下列说法正确的是( )
A.运动员到达最低点前加速度先不变后增大
B.蹦极过程中,运动员的机械能守恒
C.蹦极绳张紧后的下落过程中,动能一直减小
D.蹦极绳张紧后的下落过程中,弹力一直增大
【答案】:D
【解析】:蹦极绳张紧前,运动员只受重力,加速度不变,蹦极绳张紧后,运动员受重力、弹力,开始时重力大于弹力,加速度向下,后来重力小于弹力,加速度向上,则蹦极绳张紧后,运动员加速度先减小为零再反向增大,故A错误;蹦极过程中,运动员和弹性绳的机械能守恒,故B错误;蹦极绳张紧后的下落过程中,运动员加速度先减小为零再反向增大,运动员速度先增大再减小,运动员动能先增大再减小,故C错误;蹦极绳张紧后的下落过程中,弹性绳的伸长量增大,弹力一直增大,故D正确.
7.关于机械能守恒,下列说法中正确的是( )
A.物体做匀速运动,其机械能一定守恒
B.物体所受合力不为零,其机械能一定不守恒
C.物体所受合力做功不为零,其机械能一定不守恒
D.物体沿竖直方向向下做加速度为5 m/s2的匀加速运动,其机械能减少
【答案】 D
【解析】 物体做匀速运动其动能不变,但机械能可能变,如物体匀速上升或下降,机械能会相应的增加或减少,选项A错误;物体仅受重力作用,只有重力做功,或受其他力但其他力不做功或做功的代数和为零时,物体的机械能守恒,选项B、C错误;物体沿竖直方向向下做加速度为5 m/s2 的匀加速运动时,物体一定受到一个与运动方向相反的力的作用,此力对物体做负功,物体的机械能减少,故选项D正确。
8.将一个物体以初动能E0竖直向上抛出,落回地面时物体的动能为.设空气阻力恒定,如果将它以初动能4E0竖直上抛,则它在上升到最高点的过程中,重力势能变化了( )
A.3E0 B.2E0
C.1.5E0 D.E0
【答案】A.
【解析】:设动能为E0,其初速度为v0,上升高度为h;当动能为4E0,则初速度为2v0,上升高度为h′.由于在上升过程中加速度相同,根据v2=2gh可知,h′=4h根据动能定理设摩擦力大小为f,则f×2h=,因此f×4h=E0.因此在升到最高处其重力势能为3E0,所以答案为A.
9.如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动。小环从最高点A滑到最低点B的过程中,小环线速度大小的平方v2随下落高度h的变化图象可能是( )
【答案】 AB
【解析】 对小环由机械能守恒定律得mgh=mv2-mv,则v2=2gh+v,当v0=0时,B正确;当v0≠0时,A正确。
10.将质量分别为m和2m的两个小球A和B,用长为2L的轻杆相连,如图所示,在杆的中点O处有一固定水平转动轴,把杆置于水平位置后由静止自由释放,在B球顺时针转动到最低位置的过程中(不计一切摩擦)( )
A.A、B两球的线速度大小始终不相等 B.重力对B球做功的瞬时功率先增大后减小
C.B球转动到最低位置时的速度大小为 D.杆对B球做正功,B球机械能不守恒
【答案】BC
【解析】:A、B两球用轻杆相连共轴转动,角速度大小始终相等,转动半径相等,所以两球的线速度大小也相等,选项A错误;杆在水平位置时,重力对B球做功的瞬时功率为零,杆在竖直位置时,B球的重力方向和速度方向垂直,重力对B球做功的瞬时功率也为零,但在其他位置重力对B球做功的瞬时功率不为零,因此,重力对B球做功的瞬时功率先增大后减小,选项B正确;设B球转动到最低位置时速度为v,两球线速度大小相等,对A、B两球和杆组成的系统,由机械能守恒定律得2mgL-mgL=(2m)v2+mv2,解得v=,选项C正确;B球的重力势能减少了2mgL,动能增加了mgL,机械能减少了,所以杆对B球做负功,选项D错误.
11.2022年第24届冬季奥林匹克运动会将在北京举行,跳台滑雪是冬奥会的比赛项目之一。如图所示为一简化后的跳台滑雪的雪道示意图,运动员从O点由静止开始,在不借助其他外力的情况下,自由滑过一段圆心角为60°的光滑圆弧轨道后从A点水平飞出,然后落到斜坡上的B点。已知A点是斜坡的起点,光滑圆弧轨道半径为40 m,斜坡与水平面的夹角θ=30°,运动员的质量m=50 kg,重力加速度g=10 m/s2,忽略空气阻力。下列说法正确的是( )
A.运动员从O点运动到B点的整个过程中机械能守恒
B.运动员到达A点时的速度为20 m/s
C.运动员到达B点时的动能为10 kJ
D.运动员从A点飞出到落到B点所用的时间为 s
【答案】 AB
【解析】 由题意可得,运动员从O点运动到B点的整个过程机械能守恒,选项A正确;由圆周运动过程机械能守恒可得,运动员到达A点时的速度为20 m/s,选项B正确;由机械能守恒和平抛运动规律可知运动员到达B点时的竖直方向分速度为v⊥=v0·2tan θ= m/s,则运动员到达B点时的动能大于10 kJ,选项C错误;设运动员从A点飞出到落到B点所用的时间为t,则v⊥=gt,t= s,选项D错误。
12.如图所示,竖直面内光滑的圆形导轨固定在一水平地面上,半径为R.一个质量为m的小球从距水平地面正上方h高处的P点由静止开始自由下落,恰好从N点沿切线方向进入圆轨道.不考虑空气阻力,则下列说法正确的是( )
A.适当调整高度h,可使小球从轨道最高点M飞出后,恰好落在轨道右端口N处
B.若h=2R,则小球在轨道最低点对轨道的压力为5mg
C.只有h大于等于2.5R时,小球才能到达圆轨道的最高点M
D.若h=R,则小球能上升到圆轨道左侧离地高度为R的位置,该过程重力做功为mgR
【答案】:BC
【解析】:若小球从M到N做平抛运动,则有R=vMt,R=gt2,可得vM=,而球到达最高点M时速度至少应满足mg=m,解得v0=,故A错误;从P点到最低点过程由机械能守恒可得2mgR=mv2,由向心力公式得FN-mg=m,解得FN=5mg,由牛顿第三定律可知小球对轨道的压力为5mg,故B正确;由机械能守恒得mg(h-2R)=mv02,代入v0=解得h=2.5R,故C正确;若h=R,则小球能上升到圆轨道左侧离地高度为R的位置,该过程重力做功为0,D错误.
13.把质量是0.2 kg的小球放在竖立的弹簧上,并把球往下按至A的位置,如图甲所示.迅速松手后,弹簧把球弹起,球升至最高位置C(图丙).途中经过位置B时弹簧正好处于自由状态(图乙).已知B、A的高度差为0.1 m,C、B的高度差为 0.2 m,弹簧的质量和空气阻力都可以忽略,重力加速度g=10 m/s2.则下列说法正确的是( )
A.小球从A上升至B的过程中,弹簧的弹性势能一直减小,小球的动能一直增加
B.小球从B上升到C的过程中,小球的动能一直减小,势能一直增加
C.小球在位置A时,弹簧的弹性势能为0.6 J
D.小球从位置A上升至C的过程中,小球的最大动能为 0.4 J
【答案】BC.
【解析】:小球从A上升到B的过程中,弹簧的形变量越来越小,弹簧的弹性势能一直减小,小球在A、B之间某处的合力为零,速度最大,对应动能最大,选项A错误;小球从B上升到C的过程中,只有重力做功,机械能守恒,动能减少,势能增加,选项B正确;根据机械能守恒定律,小球在位置A时,弹簧的弹性势能为Ep=mghAC=0.2×10×0.3 J=0.6 J,选项C正确;小球在B点时的动能为Ek=mghBC=0.4 J<Ekm,选项D错误.
二、非选择题
14.质量分别为m和2m的两个小球P和Q,中间用轻质杆固定连接,杆长为L,在离P球处有一个光滑固定轴O,如图10所示。现在把杆置于水平位置后自由释放,在Q球顺时针摆动到最低位置时,求:
(1)小球P的速度大小;
(2)在此过程中小球P机械能的变化量。
【答案】 (1) (2)增加了mgL
【解析】 (1)两球和杆组成的系统机械能守恒,设小球Q摆到最低位置时P球的速度为v,由于P、Q两球的角速度相等,Q球运动半径是P球运动半径的两倍,故Q球的速度为2v。由机械能守恒定律得
2mg·L-mg·L=mv2+·2m·(2v)2,
解得v=。
(2)小球P机械能增加量ΔE=mg·L+mv2=mgL
15.如图所示,质量为3 kg小球A和质量为5 kg的B通过一压缩弹簧锁定在一起,静止于光滑平台上,解除锁定,两小球在弹力作用下分离,A球分离后向左运动恰好通过半径R=0.5 m的光滑半圆轨道的最高点,B球分离后从平台上以速度vB=3 m/s水平抛出,恰好落在临近平台的一倾角为α的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8 m,g=10 m/s2,求:
(1)A、B两球刚分离时A的速度大小;
(2)弹簧锁定时的弹性势能;
(3)斜面的倾角α。
【答案】 (1)5 m/s (2)60 J (3)53°
【解析】 (1)小球A恰好通过半径R=0.5 m的光滑半圆轨道的最高点,设在最高点速度为v0,
在最高点有mAg=mA,
物体沿光滑半圆轨道上滑到最高点的过程中机械能守恒,
mAg·2R+mAv=mAv,联立解得vA=5 m/s。
(2)根据机械能守恒定律,弹簧锁定时的弹性势能
Ep=mAv+mBv=60 J。
(3)B球分离后做平抛运动,根据平抛运动规律有
h=gt2,解得t=0.4 s,vy=gt=4 m/s,
小球刚好沿斜面下滑,tan α==,解得α=53°。
16.如图所示,质量为m=2 kg的小球以初速度v0沿光滑的水平面飞出后,恰好无碰撞地从A点进入竖直平面内的光滑圆弧轨道,其中B点为圆弧轨道的最低点,C点为圆弧轨道的最高点,圆弧AB对应的圆心角θ=53°,圆半径R=0.5 m.若小球离开水平面运动到A点所用时间t=0.4 s,求:(sin 53°=0.8,cos 53°=0.6,g取10 m/s2)
(1)小球沿水平面飞出的初速度v0的大小.
(2)到达B点时,小球对圆弧轨道的压力大小.
(3)小球能否通过圆弧轨道的最高点C?说明原因.
【答案】:(1)3 m/s (2)136 N (3)能,理由见解析
【解析】:(1)小球离开水平面运动到A点的过程中做平抛运动,有vy=gt
根据几何关系可得tan θ=
代入数据,解得v0=3 m/s
(2)由题意可知,小球在A点的速度vA=
小球从A点运动到B点的过程,满足机械能守恒定律,有
mvA2+mgR(1-cos θ)=mvB2
设小球运动到B点时受到圆弧轨道的支持力为FN,根据牛顿第二定律有FN-mg=m
代入数据,解得FN=136 N
由牛顿第三定律可知,小球对圆弧轨道的压力FN′=FN=136 N
(3)假设小球能通过最高点C,则小球从B点运动到C点的过程,满足机械能守恒定律,有
mvB2=mg·2R+mvC2
在C点有F向=m
代入数据,解得F向=36 N>mg
所以小球能通过最高点C.
一、选择题(1~8题为单项选择题,9~15题为多项选择题)
1.一轻绳系住一质量为m的小球悬挂在O点,在最低点先给小球一水平初速度,小球恰能在竖直平面内绕O点做圆周运动,若在水平半径OP的中点A处钉一枚光滑的钉子,仍在最低点给小球同样的初速度,则小球向上通过P点后将绕A点做圆周运动,则到达最高点N时,绳子的拉力大小为 ( )
A.0 B.2mg C.3mg D.4mg
2.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,重力加速度为g,不计空气阻力,则小球B下降h时的速度为( )
A. B. C. D.
3.如图所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是( )
A.斜劈对小球的弹力不做功 B.斜劈与小球组成的系统机械能守恒
C.斜劈的机械能守恒 D.小球重力势能减少量等于斜劈动能的增加量
4.用长为L的细线系着一个质量为m的小球(可以看做质点),以细线端点O为圆心,在竖直平面内做圆周运动。P点和Q点分别为轨迹的最低点和最高点,不考虑空气阻力,小球经过P点和Q点时所受细线拉力的差值为( )
A.2mg B.4mg C.6mg D.8mg
5.将一小球从高处水平抛出,最初2 s内小球动能Ek随时间t变化的图象如图3所示,不计空气阻力,g取10 m/s2。根据图象信息,不能确定的物理量是( )
A.小球的质量
B.小球的初速度
C.最初2 s内重力对小球做功的平均功率
D.小球抛出时的高度
6.蹦极是一项非常刺激的户外休闲活动.北京青龙峡蹦极跳塔高度为68米,身系弹性蹦极绳的蹦极运动员从高台跳下,下落高度大约为50米.假定空气阻力可忽略,运动员可视为质点.下列说法正确的是( )
A.运动员到达最低点前加速度先不变后增大
B.蹦极过程中,运动员的机械能守恒
C.蹦极绳张紧后的下落过程中,动能一直减小
D.蹦极绳张紧后的下落过程中,弹力一直增大
7.关于机械能守恒,下列说法中正确的是( )
A.物体做匀速运动,其机械能一定守恒
B.物体所受合力不为零,其机械能一定不守恒
C.物体所受合力做功不为零,其机械能一定不守恒
D.物体沿竖直方向向下做加速度为5 m/s2的匀加速运动,其机械能减少
8.将一个物体以初动能E0竖直向上抛出,落回地面时物体的动能为.设空气阻力恒定,如果将它以初动能4E0竖直上抛,则它在上升到最高点的过程中,重力势能变化了( )
A.3E0 B.2E0
C.1.5E0 D.E0
9.如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动。小环从最高点A滑到最低点B的过程中,小环线速度大小的平方v2随下落高度h的变化图象可能是( )
10.将质量分别为m和2m的两个小球A和B,用长为2L的轻杆相连,如图所示,在杆的中点O处有一固定水平转动轴,把杆置于水平位置后由静止自由释放,在B球顺时针转动到最低位置的过程中(不计一切摩擦)( )
A.A、B两球的线速度大小始终不相等 B.重力对B球做功的瞬时功率先增大后减小
C.B球转动到最低位置时的速度大小为 D.杆对B球做正功,B球机械能不守恒
11.2022年第24届冬季奥林匹克运动会将在北京举行,跳台滑雪是冬奥会的比赛项目之一。如图所示为一简化后的跳台滑雪的雪道示意图,运动员从O点由静止开始,在不借助其他外力的情况下,自由滑过一段圆心角为60°的光滑圆弧轨道后从A点水平飞出,然后落到斜坡上的B点。已知A点是斜坡的起点,光滑圆弧轨道半径为40 m,斜坡与水平面的夹角θ=30°,运动员的质量m=50 kg,重力加速度g=10 m/s2,忽略空气阻力。下列说法正确的是( )
A.运动员从O点运动到B点的整个过程中机械能守恒
B.运动员到达A点时的速度为20 m/s
C.运动员到达B点时的动能为10 kJ
D.运动员从A点飞出到落到B点所用的时间为 s
12.如图所示,竖直面内光滑的圆形导轨固定在一水平地面上,半径为R.一个质量为m的小球从距水平地面正上方h高处的P点由静止开始自由下落,恰好从N点沿切线方向进入圆轨道.不考虑空气阻力,则下列说法正确的是( )
A.适当调整高度h,可使小球从轨道最高点M飞出后,恰好落在轨道右端口N处
B.若h=2R,则小球在轨道最低点对轨道的压力为5mg
C.只有h大于等于2.5R时,小球才能到达圆轨道的最高点M
D.若h=R,则小球能上升到圆轨道左侧离地高度为R的位置,该过程重力做功为mgR
13.把质量是0.2 kg的小球放在竖立的弹簧上,并把球往下按至A的位置,如图甲所示.迅速松手后,弹簧把球弹起,球升至最高位置C(图丙).途中经过位置B时弹簧正好处于自由状态(图乙).已知B、A的高度差为0.1 m,C、B的高度差为 0.2 m,弹簧的质量和空气阻力都可以忽略,重力加速度g=10 m/s2.则下列说法正确的是( )
A.小球从A上升至B的过程中,弹簧的弹性势能一直减小,小球的动能一直增加
B.小球从B上升到C的过程中,小球的动能一直减小,势能一直增加
C.小球在位置A时,弹簧的弹性势能为0.6 J
D.小球从位置A上升至C的过程中,小球的最大动能为 0.4 J
二、非选择题
14.质量分别为m和2m的两个小球P和Q,中间用轻质杆固定连接,杆长为L,在离P球处有一个光滑固定轴O,如图10所示。现在把杆置于水平位置后自由释放,在Q球顺时针摆动到最低位置时,求:
(1)小球P的速度大小;
(2)在此过程中小球P机械能的变化量。
15.如图所示,质量为3 kg小球A和质量为5 kg的B通过一压缩弹簧锁定在一起,静止于光滑平台上,解除锁定,两小球在弹力作用下分离,A球分离后向左运动恰好通过半径R=0.5 m的光滑半圆轨道的最高点,B球分离后从平台上以速度vB=3 m/s水平抛出,恰好落在临近平台的一倾角为α的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8 m,g=10 m/s2,求:
(1)A、B两球刚分离时A的速度大小;
(2)弹簧锁定时的弹性势能;
(3)斜面的倾角α。
16.如图所示,质量为m=2 kg的小球以初速度v0沿光滑的水平面飞出后,恰好无碰撞地从A点进入竖直平面内的光滑圆弧轨道,其中B点为圆弧轨道的最低点,C点为圆弧轨道的最高点,圆弧AB对应的圆心角θ=53°,圆半径R=0.5 m.若小球离开水平面运动到A点所用时间t=0.4 s,求:(sin 53°=0.8,cos 53°=0.6,g取10 m/s2)
(1)小球沿水平面飞出的初速度v0的大小.
(2)到达B点时,小球对圆弧轨道的压力大小.
(3)小球能否通过圆弧轨道的最高点C?说明原因.
答案解析
一、选择题(1~8题为单项选择题,9~15题为多项选择题)
1.一轻绳系住一质量为m的小球悬挂在O点,在最低点先给小球一水平初速度,小球恰能在竖直平面内绕O点做圆周运动,若在水平半径OP的中点A处钉一枚光滑的钉子,仍在最低点给小球同样的初速度,则小球向上通过P点后将绕A点做圆周运动,则到达最高点N时,绳子的拉力大小为 ( )
A.0 B.2mg C.3mg D.4mg
【答案】 C
【解析】 恰能做圆周运动,则在最高点有
mg=,
解得v=。
由机械能守恒定律可知
mg2R=mv-mv2,
解得初速度v0=,根据机械能守恒,在最高点N的速度为v′,则:
mgR=mv-mv′2
根据向心力公式:T+mg=,
联立得T=3mg。故选项C正确。
2.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,重力加速度为g,不计空气阻力,则小球B下降h时的速度为( )
A. B. C. D.
【答案】 A
【解析】 根据系统机械能守恒得,对A下降h的过程有mgh=Ep,对B下降h的过程有3mgh=Ep+×3mv2,解得v=,只有选项A正确。
3.如图所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是( )
A.斜劈对小球的弹力不做功 B.斜劈与小球组成的系统机械能守恒
C.斜劈的机械能守恒 D.小球重力势能减少量等于斜劈动能的增加量
【答案】B.
【解析】:不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球的重力做功,小球重力势能减少量等于斜劈和小球的动能增加量,系统机械能守恒,B正确,C、D错误;斜劈对小球的弹力与小球位移间夹角大于90°,故弹力做负功,A错误.
4.用长为L的细线系着一个质量为m的小球(可以看做质点),以细线端点O为圆心,在竖直平面内做圆周运动。P点和Q点分别为轨迹的最低点和最高点,不考虑空气阻力,小球经过P点和Q点时所受细线拉力的差值为( )
A.2mg B.4mg C.6mg D.8mg
【答案】 C
【解析】 根据牛顿第二定律,在Q点,有F1+mg=m,在P点,有F2-mg=m,从最高点到最低点过程,根据机械能守恒定律,有mg·(2L)=mv-mv,联立三式,解得小球经过P点和Q点时所受细线拉力的差值为F2-F1=6mg,C正确。
5.将一小球从高处水平抛出,最初2 s内小球动能Ek随时间t变化的图象如图3所示,不计空气阻力,g取10 m/s2。根据图象信息,不能确定的物理量是( )
A.小球的质量
B.小球的初速度
C.最初2 s内重力对小球做功的平均功率
D.小球抛出时的高度
【答案】 D
【解析】 由机械能守恒定律可得Ek=Ek0+mgh,又h=gt2,所以Ek=Ek0+mg2t2。当t=0时,Ek0=mv=5 J,当t=2 s时,Ek=Ek0+2mg2=30 J,联立方程解得m=0.125 kg,v0=4 m/s。当t=2 s时,由动能定理得WG=ΔEk=25 J,故==12.5 W。根据图象信息,无法确定小球抛出时离地面的高度。综上所述,应选D。
6.蹦极是一项非常刺激的户外休闲活动.北京青龙峡蹦极跳塔高度为68米,身系弹性蹦极绳的蹦极运动员从高台跳下,下落高度大约为50米.假定空气阻力可忽略,运动员可视为质点.下列说法正确的是( )
A.运动员到达最低点前加速度先不变后增大
B.蹦极过程中,运动员的机械能守恒
C.蹦极绳张紧后的下落过程中,动能一直减小
D.蹦极绳张紧后的下落过程中,弹力一直增大
【答案】:D
【解析】:蹦极绳张紧前,运动员只受重力,加速度不变,蹦极绳张紧后,运动员受重力、弹力,开始时重力大于弹力,加速度向下,后来重力小于弹力,加速度向上,则蹦极绳张紧后,运动员加速度先减小为零再反向增大,故A错误;蹦极过程中,运动员和弹性绳的机械能守恒,故B错误;蹦极绳张紧后的下落过程中,运动员加速度先减小为零再反向增大,运动员速度先增大再减小,运动员动能先增大再减小,故C错误;蹦极绳张紧后的下落过程中,弹性绳的伸长量增大,弹力一直增大,故D正确.
7.关于机械能守恒,下列说法中正确的是( )
A.物体做匀速运动,其机械能一定守恒
B.物体所受合力不为零,其机械能一定不守恒
C.物体所受合力做功不为零,其机械能一定不守恒
D.物体沿竖直方向向下做加速度为5 m/s2的匀加速运动,其机械能减少
【答案】 D
【解析】 物体做匀速运动其动能不变,但机械能可能变,如物体匀速上升或下降,机械能会相应的增加或减少,选项A错误;物体仅受重力作用,只有重力做功,或受其他力但其他力不做功或做功的代数和为零时,物体的机械能守恒,选项B、C错误;物体沿竖直方向向下做加速度为5 m/s2 的匀加速运动时,物体一定受到一个与运动方向相反的力的作用,此力对物体做负功,物体的机械能减少,故选项D正确。
8.将一个物体以初动能E0竖直向上抛出,落回地面时物体的动能为.设空气阻力恒定,如果将它以初动能4E0竖直上抛,则它在上升到最高点的过程中,重力势能变化了( )
A.3E0 B.2E0
C.1.5E0 D.E0
【答案】A.
【解析】:设动能为E0,其初速度为v0,上升高度为h;当动能为4E0,则初速度为2v0,上升高度为h′.由于在上升过程中加速度相同,根据v2=2gh可知,h′=4h根据动能定理设摩擦力大小为f,则f×2h=,因此f×4h=E0.因此在升到最高处其重力势能为3E0,所以答案为A.
9.如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动。小环从最高点A滑到最低点B的过程中,小环线速度大小的平方v2随下落高度h的变化图象可能是( )
【答案】 AB
【解析】 对小环由机械能守恒定律得mgh=mv2-mv,则v2=2gh+v,当v0=0时,B正确;当v0≠0时,A正确。
10.将质量分别为m和2m的两个小球A和B,用长为2L的轻杆相连,如图所示,在杆的中点O处有一固定水平转动轴,把杆置于水平位置后由静止自由释放,在B球顺时针转动到最低位置的过程中(不计一切摩擦)( )
A.A、B两球的线速度大小始终不相等 B.重力对B球做功的瞬时功率先增大后减小
C.B球转动到最低位置时的速度大小为 D.杆对B球做正功,B球机械能不守恒
【答案】BC
【解析】:A、B两球用轻杆相连共轴转动,角速度大小始终相等,转动半径相等,所以两球的线速度大小也相等,选项A错误;杆在水平位置时,重力对B球做功的瞬时功率为零,杆在竖直位置时,B球的重力方向和速度方向垂直,重力对B球做功的瞬时功率也为零,但在其他位置重力对B球做功的瞬时功率不为零,因此,重力对B球做功的瞬时功率先增大后减小,选项B正确;设B球转动到最低位置时速度为v,两球线速度大小相等,对A、B两球和杆组成的系统,由机械能守恒定律得2mgL-mgL=(2m)v2+mv2,解得v=,选项C正确;B球的重力势能减少了2mgL,动能增加了mgL,机械能减少了,所以杆对B球做负功,选项D错误.
11.2022年第24届冬季奥林匹克运动会将在北京举行,跳台滑雪是冬奥会的比赛项目之一。如图所示为一简化后的跳台滑雪的雪道示意图,运动员从O点由静止开始,在不借助其他外力的情况下,自由滑过一段圆心角为60°的光滑圆弧轨道后从A点水平飞出,然后落到斜坡上的B点。已知A点是斜坡的起点,光滑圆弧轨道半径为40 m,斜坡与水平面的夹角θ=30°,运动员的质量m=50 kg,重力加速度g=10 m/s2,忽略空气阻力。下列说法正确的是( )
A.运动员从O点运动到B点的整个过程中机械能守恒
B.运动员到达A点时的速度为20 m/s
C.运动员到达B点时的动能为10 kJ
D.运动员从A点飞出到落到B点所用的时间为 s
【答案】 AB
【解析】 由题意可得,运动员从O点运动到B点的整个过程机械能守恒,选项A正确;由圆周运动过程机械能守恒可得,运动员到达A点时的速度为20 m/s,选项B正确;由机械能守恒和平抛运动规律可知运动员到达B点时的竖直方向分速度为v⊥=v0·2tan θ= m/s,则运动员到达B点时的动能大于10 kJ,选项C错误;设运动员从A点飞出到落到B点所用的时间为t,则v⊥=gt,t= s,选项D错误。
12.如图所示,竖直面内光滑的圆形导轨固定在一水平地面上,半径为R.一个质量为m的小球从距水平地面正上方h高处的P点由静止开始自由下落,恰好从N点沿切线方向进入圆轨道.不考虑空气阻力,则下列说法正确的是( )
A.适当调整高度h,可使小球从轨道最高点M飞出后,恰好落在轨道右端口N处
B.若h=2R,则小球在轨道最低点对轨道的压力为5mg
C.只有h大于等于2.5R时,小球才能到达圆轨道的最高点M
D.若h=R,则小球能上升到圆轨道左侧离地高度为R的位置,该过程重力做功为mgR
【答案】:BC
【解析】:若小球从M到N做平抛运动,则有R=vMt,R=gt2,可得vM=,而球到达最高点M时速度至少应满足mg=m,解得v0=,故A错误;从P点到最低点过程由机械能守恒可得2mgR=mv2,由向心力公式得FN-mg=m,解得FN=5mg,由牛顿第三定律可知小球对轨道的压力为5mg,故B正确;由机械能守恒得mg(h-2R)=mv02,代入v0=解得h=2.5R,故C正确;若h=R,则小球能上升到圆轨道左侧离地高度为R的位置,该过程重力做功为0,D错误.
13.把质量是0.2 kg的小球放在竖立的弹簧上,并把球往下按至A的位置,如图甲所示.迅速松手后,弹簧把球弹起,球升至最高位置C(图丙).途中经过位置B时弹簧正好处于自由状态(图乙).已知B、A的高度差为0.1 m,C、B的高度差为 0.2 m,弹簧的质量和空气阻力都可以忽略,重力加速度g=10 m/s2.则下列说法正确的是( )
A.小球从A上升至B的过程中,弹簧的弹性势能一直减小,小球的动能一直增加
B.小球从B上升到C的过程中,小球的动能一直减小,势能一直增加
C.小球在位置A时,弹簧的弹性势能为0.6 J
D.小球从位置A上升至C的过程中,小球的最大动能为 0.4 J
【答案】BC.
【解析】:小球从A上升到B的过程中,弹簧的形变量越来越小,弹簧的弹性势能一直减小,小球在A、B之间某处的合力为零,速度最大,对应动能最大,选项A错误;小球从B上升到C的过程中,只有重力做功,机械能守恒,动能减少,势能增加,选项B正确;根据机械能守恒定律,小球在位置A时,弹簧的弹性势能为Ep=mghAC=0.2×10×0.3 J=0.6 J,选项C正确;小球在B点时的动能为Ek=mghBC=0.4 J<Ekm,选项D错误.
二、非选择题
14.质量分别为m和2m的两个小球P和Q,中间用轻质杆固定连接,杆长为L,在离P球处有一个光滑固定轴O,如图10所示。现在把杆置于水平位置后自由释放,在Q球顺时针摆动到最低位置时,求:
(1)小球P的速度大小;
(2)在此过程中小球P机械能的变化量。
【答案】 (1) (2)增加了mgL
【解析】 (1)两球和杆组成的系统机械能守恒,设小球Q摆到最低位置时P球的速度为v,由于P、Q两球的角速度相等,Q球运动半径是P球运动半径的两倍,故Q球的速度为2v。由机械能守恒定律得
2mg·L-mg·L=mv2+·2m·(2v)2,
解得v=。
(2)小球P机械能增加量ΔE=mg·L+mv2=mgL
15.如图所示,质量为3 kg小球A和质量为5 kg的B通过一压缩弹簧锁定在一起,静止于光滑平台上,解除锁定,两小球在弹力作用下分离,A球分离后向左运动恰好通过半径R=0.5 m的光滑半圆轨道的最高点,B球分离后从平台上以速度vB=3 m/s水平抛出,恰好落在临近平台的一倾角为α的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8 m,g=10 m/s2,求:
(1)A、B两球刚分离时A的速度大小;
(2)弹簧锁定时的弹性势能;
(3)斜面的倾角α。
【答案】 (1)5 m/s (2)60 J (3)53°
【解析】 (1)小球A恰好通过半径R=0.5 m的光滑半圆轨道的最高点,设在最高点速度为v0,
在最高点有mAg=mA,
物体沿光滑半圆轨道上滑到最高点的过程中机械能守恒,
mAg·2R+mAv=mAv,联立解得vA=5 m/s。
(2)根据机械能守恒定律,弹簧锁定时的弹性势能
Ep=mAv+mBv=60 J。
(3)B球分离后做平抛运动,根据平抛运动规律有
h=gt2,解得t=0.4 s,vy=gt=4 m/s,
小球刚好沿斜面下滑,tan α==,解得α=53°。
16.如图所示,质量为m=2 kg的小球以初速度v0沿光滑的水平面飞出后,恰好无碰撞地从A点进入竖直平面内的光滑圆弧轨道,其中B点为圆弧轨道的最低点,C点为圆弧轨道的最高点,圆弧AB对应的圆心角θ=53°,圆半径R=0.5 m.若小球离开水平面运动到A点所用时间t=0.4 s,求:(sin 53°=0.8,cos 53°=0.6,g取10 m/s2)
(1)小球沿水平面飞出的初速度v0的大小.
(2)到达B点时,小球对圆弧轨道的压力大小.
(3)小球能否通过圆弧轨道的最高点C?说明原因.
【答案】:(1)3 m/s (2)136 N (3)能,理由见解析
【解析】:(1)小球离开水平面运动到A点的过程中做平抛运动,有vy=gt
根据几何关系可得tan θ=
代入数据,解得v0=3 m/s
(2)由题意可知,小球在A点的速度vA=
小球从A点运动到B点的过程,满足机械能守恒定律,有
mvA2+mgR(1-cos θ)=mvB2
设小球运动到B点时受到圆弧轨道的支持力为FN,根据牛顿第二定律有FN-mg=m
代入数据,解得FN=136 N
由牛顿第三定律可知,小球对圆弧轨道的压力FN′=FN=136 N
(3)假设小球能通过最高点C,则小球从B点运动到C点的过程,满足机械能守恒定律,有
mvB2=mg·2R+mvC2
在C点有F向=m
代入数据,解得F向=36 N>mg
所以小球能通过最高点C.
相关资料
更多