- 二次根式的乘除--知识讲解(基础) 教案 14 次下载
- 二次根式的乘除--巩固练习(基础) 试卷 15 次下载
- 二次根式的乘除法-巩固练习(提高) 试卷 13 次下载
- 二次根式的加减(基础)知识讲解 教案 13 次下载
- 二次根式的加减(基础)巩固练习 试卷 15 次下载
初中人教版16.2 二次根式的乘除教学设计
展开【学习目标】
掌握二次根式的乘除法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算.
了解最简二次根式的概念,能运用二次根式的有关性质进行化简.
【要点梳理】
知识点一、二次根式的乘法及积的算术平方根
1。乘法法则:(≥0,≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.
要点诠释:
(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中, 如果没有特别说明,所有字母都表示非负数).
(2)该法则可以推广到多个二次根式相乘的运算:
;
≥0,≥0,…..≥0);
(3)若二次根式相乘的结果能写成的形式,则应化简,如.
2.积的算术平方根
(≥0,≥0),即积的算术平方根等于积中各因式的算术平方根的积.
要点诠释:
(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足≥0,≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;
(2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.
知识点二、二次根式的除法及商的算术平方根
1.除法法则:(≥0,>0),即两个二次根式相除,根指数不变,把被开方数相除..
要点诠释:
(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,≥0,>0,因为b在分母上,故b不能为0.
(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.
2.商的算术平方根的性质
(≥0,>0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
要点诠释:
运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题.
知识点三、最简二次根式
(1)被开方数不含有分母;
(2)被开方数中不含能开得尽方的因数或因式.
满足这两个条件的二次根式叫最简二次根式.
要点诠释:二次根式化成最简二次根式主要有以下两种情况:
(1) 被开方数是分数或分式;
(2)含有能开方的因数或因式.
【典型例题】
类型一、二次根式的乘除
1. 计算:(1)(2014秋•闵行区校级期中)×(﹣2)÷.
(2)(2014春·高安市期中)
【答案与解析】
解:(1)×(﹣2)÷
=×(﹣2)×
=﹣
=﹣
=﹣.
(2)原式=
【总结升华】根据二次根式的乘除法则灵活运算,注意最终结果要化简.
举一反三:
【变式】
【答案】原式=
=
2.计算
(1)·(-)÷(m>0,n>0);
(2)-3÷()× (a>0).
【思路点拨】复杂的二次根式计算,要注意在化简过程中运用幂的乘除运算和因式分解运算.
【答案与解析】
(1)原式=-÷=-==-;
(2)原式=-2=-2=-a.
【总结升华】熟练乘除运算,更要加强运算准确的训练.
举一反三:
【变式】已知,且x为偶数,求(1+x)的值.
【答案】由题意得,即
∴6<x≤9,∵x为偶数,∴x=8
∴原式=(1+x)=(1+x)=(1+x)=
∴当x=8时,原式的值==6.
类型二、最简二次根式
3.已知0<<,化简.
【答案与解析】原式==
=
【总结升华】成立的条件是>0;若<0,则.
4. (2016•黄石)观察下列等式:
第1个等式:a1==﹣1,
第2个等式:a2==﹣,
第3个等式:a3==2﹣,
第4个等式:a4==﹣2,
按上述规律,回答以下问题:
(1)请写出第n个等式:an= ;
(2)a1+a2+a3+…+an= .
【思路点拨】(1)根据题意可知,a1==﹣1,a2==﹣,a3==2﹣,a4==﹣2,…由此得出第n个等式:an==﹣;
(2)将每一个等式化简即可求得答案.
【答案与解析】
解:(1)∵第1个等式:a1==﹣1,
第2个等式:a2==﹣,
第3个等式:a3==2﹣,
第4个等式:a4==﹣2,
∴第n个等式:an==﹣;
(2)a1+a2+a3+…+an
=(﹣1)+(﹣)+(2﹣)+(﹣2)+…+(﹣)
=﹣1.
故答案为=﹣;﹣1.
【总结升华】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.
举一反三:
【变式】若的整数部分是,小数部分是,求的值.
【答案】
又因为整数部分是,小数部分是
则=13,=
=
人教版九年级上册第二十四章 圆综合与测试精品教案: 这是一份人教版九年级上册第二十四章 圆综合与测试精品教案,共12页。教案主要包含了学习目标,知识网络,要点梳理,典型例题,答案与解析等内容,欢迎下载使用。
初中数学人教版八年级下册19.2.1 正比例函数教案及反思: 这是一份初中数学人教版八年级下册19.2.1 正比例函数教案及反思,共4页。教案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
初中人教版18.2.3 正方形教学设计及反思: 这是一份初中人教版18.2.3 正方形教学设计及反思,共9页。教案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。