初中数学华师大版八年级上册第14章 勾股定理综合与测试同步训练题
展开一、单选题
1.下列各组数据中,不能构成直角三角形的是( )
A.9、12、15B.C.8、15、17D.9、40、41
2.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为( )
A.169B.25C.19D.13
3.如图,在中,,点是的中点,点是边上一点,且,连接.若,,则的长( )
A.B.C.D.
4.如图,在中,是边上的中点,连结,把沿翻折,得到,连接,若,,则的面积为( )
A.B.C.D.2
5.如图,为了测量池塘的宽度,在池塘周围的平地上选择了、、三点,且、、、四点在同一条直线上,,已测得,,,,则池塘的宽度( )
A.B.C.D.
6.《九章算术》内容丰富,与实际生活联系紧密,在书上讲述了这样一个问题“今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?”其内容可以表述为:“有一面墙,高一丈.将一根木杆斜靠在墙上,使木杆的上端与墙的上端对齐,下端落在地面上.如果使木杆下端从此时的位置向远离墙的方向移动1尺,则木杆上端恰好沿着墙滑落到地面上.问木杆长多少尺?”(说明:1丈=10尺)设木杆长x尺,依题意,下列方程正确的是( )
A.x2=(x﹣1)2+102B.(x+1)2=x2+102
C.x2=(x﹣1)2+12D.(x+1)2=x2+12
7.如图,一根长5米的竹竿斜靠在竖直的墙上,这时为4米,若竹竿的顶端沿墙下滑2米至处,则竹竿底端外移的距离( )
A.小于2米B.等于2米C.大于2米D.以上都不对
8.已知:中,,求证:,下面写出可运用反证法证明这个命题的四个步骤:
①∴,这与三角形内角和为矛盾,②因此假设不成立.∴,③假设在中,,④由,得,即.这四个步骤正确的顺序应是( )
A.③④②①B.③④①②C.①②③④D.④③①②
9.如图:已知△ABC为直角三角形,分别以直角边AC、BC为直径作半圆AmC和BnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为S1,△ABC的面积为S2,则S1与S2的大小关系为( )
A.S1>S2B.S1<S2C.S1=S2D.不能确定
10.如图,正方形的边长为10,,,连接,则线段的长为( )
A.B.C.D.
二、填空题
11.已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.
12.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为_______________;
13.如图,已知∠A=90°,AC=AB=4,CD=2,BD=6.则∠ACD=________度.
14.在如图所示的圆柱体中,底面圆的半径是,高为4,BC是上底面的直径,若一只小虫从点A出发,沿圆柱体侧面爬行到点C,则小虫爬行的最短路程是_______.
15.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(图1),后人称其为“赵爽弦图”,由弦图变化得到图2,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=12,则S2的值为_______.
(图1) (图2)
三、解答题
16.如图,在四边形ABCD中,已知AB=5,BC=3,CD=6,AD=2,若AC⊥BC,求证:AD∥BC.
17.如图,在5×5的正方形网格中,每个小正方形的边长都是1,在所给网格中按下列要求画出图形:
(1)(I)已知点A在格点(即小正方形的顶点)上,画一条线段AB,长度为,且点B在格点上; (II)以上题中所画线段AB为一边,另外两条边长分别是3,2,画一个三角形ABC,使点C在格点上(只需画出符合条件的一个三角形);
(2)所画的三角形ABC的AB边上高线长.(直接写出答案)
18.如图1,在等腰Rt△ABC中,∠ACB=90°,点F是AB上一点,作等腰Rt△FCP,且∠PCF=90°,连结AP.
(1)求证:△CFB≌△CPA;
(2)求证:AP2+AF2=PF2;
(3)如图2,在AF上取点E,使∠ECF=45°,求证:AE2+BF2=EF2.
19.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.
(1)该城市是否会受到这交台风的影响?请说明理由.
(2)若会受到台风影响,那么台风影响该城市持续时间有多少?
(3)该城市受到台风影响的最大风力为几级?
20.为了庆祝建校八十周年,某校各班都在开展丰富多彩的庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20 cm,宽AB=16 cm的长方形纸片ABCD;②将纸片沿着直线AE折叠,使点D恰好落在BC边上的F处……请你根据①②步骤解答下列问题.
(1)找出图中的∠FEC的余角;
(2)计算EC的长.
21.如图,正方形ABCD的边长为4厘米,动点P从点A出发沿AB边由A向B以1厘米/秒的速度匀速移动(点P不与点A、B重合),动点Q从点B出发沿拆线BC-CD以2厘米/秒的速度匀速移动。点P、Q同时出发,当点P停止运动,点Q也随之停止。联结AQ交BD于点E。设点P运动时间为t秒。
(1)用t表示线段PB的长;
(2)当点Q在线段BC上运动时,t为何值时,∠BEP和∠BEQ相等;
(3)当t为何值时,线段P、Q之间的距离为25cm.
参考答案
1.B2.B3.C4.C5.C6.A7.A8.B9.C10.B
11.4.8cm12.1692413.45 14.515.4
17.(2).
19.(1)该城市会受到这次台风的影响;
(2)这次台风影响该城市的持续时间为415小时;
(3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为6.5级.
20.(1)∠CFE、∠BAF;(2) 6 cm.
21.(1)PB=4-t;(2)t=43;(3)t=2或103;
华师大版八年级上册14.2 勾股定理的应用复习练习题: 这是一份华师大版八年级上册14.2 勾股定理的应用复习练习题,共5页。试卷主要包含了掌握利用勾股定理解决折叠问题,掌握利用勾股定理解决面积问题等内容,欢迎下载使用。
华师大版八年级上册第14章 勾股定理综合与测试精练: 这是一份华师大版八年级上册第14章 勾股定理综合与测试精练,共13页。
华师大版八年级上册第14章 勾股定理综合与测试课时作业: 这是一份华师大版八年级上册第14章 勾股定理综合与测试课时作业,共10页。