|试卷下载
终身会员
搜索
    上传资料 赚现金
    (新高考)2021届高三培优专练9 平面向量解析版
    立即下载
    加入资料篮
    (新高考)2021届高三培优专练9 平面向量解析版01
    (新高考)2021届高三培优专练9 平面向量解析版02
    (新高考)2021届高三培优专练9 平面向量解析版03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (新高考)2021届高三培优专练9 平面向量解析版

    展开

    培优9  平面向量

    一、平面向量的线性运算与共线定理

    1中,是直线上一点,若

    则实数        

    【答案】

    【解析】因为,所以

    因为是直线上的一点,所以设,则

    二、平面向量的基本定理(三角形的四心问题)

    2:已知是平面内不共线三点,的外心,动点满足

    ,则的轨迹一定通过的(   

    A.内心 B.垂心 C.外心 D.重心

    【答案】D

    【解析】边的中点,则

    可得

    所以

    即点的轨迹为三角形中边上的中线,故选D

    三、平面向量的建系坐标化应用

    3:已知是边长为的正六边形内的一点,则的取值范围是(   

    A B C D

    【答案】A

    【解析】如图,建立平面直角坐标系

    由题意知

    ,则

    的取值范围是

    四、平面向量的数量积

    4:如图在矩形中,,点的中点,点上,若,则的值是(   

    A B C D

    【答案】B

    【解析】选基向量,由题意得

    ,解得

    的中点,

    五、平面向量与三角函数结合

    5已知

    1)求函数解析式,及最小正周期;

    2)当,函数最大值为求此函数最小值

    【答案】1;(2

    【解析】1

    2)当

                                   增分训练

    、选

    1已知向量,其中,则的最小值为(   

    A B C D

    【答案】A

    【解析】

    的最小值为

    2所在直线上任意一点,若   

    A B C D

    【答案】C

    【解析】所在直线上任意一点,

    存在实数使得,即

    化简得

    结合平面向量基本定理,

    3所在平面内一点,且满足,则的形状为(   

    A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形

    【答案】B

    【解析】

    原式化为

    对角线构成平行四边形为矩形,

    为直角三角形.

    4如图,在一点,且满足

    面积为最小值为   

    A B C D

    【答案】B

    【解析】

    则三角形面积为解得

    三点共线

    可知

    为坐标原点,所在直线为垂线为

    建立如图所示坐标系

    (当且仅当).

    最小值为

    5已知,则的取值范围是(   

    A B C D

    【答案】A

    【解析】如图所示,

    中点为可得

    的终点在以圆心,半径圆上运动,

    处,最小值为

    延长线最大值为

    取值范围是

    6已知向量,若是实数,且

    的最小值为(   

    A B C D

    【答案】C

    【解析】

    ,当时取等号.

    7分别是的内角的对边,已知

    ,设边的中点,且的面积为,则等于(   

    A B C D

    【答案】A

    【解析】

    由正弦定理可得,整理可得

    由余弦定理可得,可得

    的面积为,即

    8是平面上定点,是平面内不共线三点,动点满足

    ,则的轨迹一定通过的(   

    A.外心 B.内心 C.重心 D.垂心

    【答案】B

    【解析】上的单位向量,上的单位向量,

    的方向为的角平分线的方向,

    ,所以的方向相同,

    可得

    所以点上移动,故的轨迹一定是通过的内心,B

    9已知所在平面内一点,且取值范围   

    A B C D

    【答案】D

    【解析】由题意建立如图所示的坐标系,

    可得

    当且仅当,取等号,

    ,可得,可得

    最大值为最小值为

    范围是

    10在平行四边形中,分别是的中点,于点,记   

    A B C D

    【答案】B

    【解析】如图,分别是的中点,

    三点共线,存在实数

    使得

    三点共线,存在实数,且

    使得

    ,解得

    11.(多选题)在中,若,则下列说法错误的是(   

    A的外心 B的内心

    C的重心 D的垂心

    【答案】ABC

    【解析】

    同理由,得到

    的三条高的交点.

    12.(多选题)中,下列命题正确的是(   

    A

    B

    C.点内一点,且,则为等腰三角形

    D,则为锐角三角形

    【答案】BC

    【解析】A由向量的减法法则可知:,题中的说法错误;

    B由向量加法的三角形法则可得,题中的说法正确;

    C因为,即

    又因为,所以

    ,所以是等腰三角形,题中的说法正确;

    D,则,据此可知为锐角,无法确定为锐角三角形,题中的说法错误.

     

    二、填空题

    13.已知是单位向量,,若,则实数         ;若三点共线,则实数       

    【答案】

    【解析】由已知可得,解得实数

    三点共线,又

    ,解得实数

    14如图,是半径为的圆的直径,是圆上异于的一点,是线段上靠近的三等分点,且,则的值为       

    【答案】

    【解析】如图,以点为坐标原点,所在直线为轴,建立直角坐标系,

    则圆,设

    是线段上靠近的三等分点,,解得

    ,解得

    的值为

     

    、解答题

    15已知向量

    1)设的减区间;

    2)若向量共线,且第二象限角,求

    【答案】1减区间为2

    【解析】1

    ,可得

    的减区间为

    2)因为与向量共线

    所以

    又因为是第二象限角,所以

    所以:

    16已知函数,其中

    1)求函数的单调递减区间;

    2)在中,角所对的边分别为

    且向量与向量共线,求的面积.

    【答案】1)单调递减区间为;(2

    【解析】1

    ,解得

    函数的单调递减区间为

    2,即

    由余弦定理得

    向量共线,

    ,由正弦定理得

    ①②

     

     

     

     

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (新高考)2021届高三培优专练9 平面向量解析版
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map