- 专题1.3 集合的基本运算-2020-2021学年高一数学尖子生同步培优题典(人教A版2019必修第一册) 试卷 2 次下载
- 专题1.2 集合的基本关系-2020-2021学年高一数学尖子生同步培优题典(人教A版2019必修第一册) 试卷 3 次下载
- 专题1.4 充分条件与必要条件-2020-2021学年高一数学尖子生同步培优题典(人教A版2019必修第一册) 试卷 2 次下载
- 专题2.1 等式性质与不等式性质-2020-2021学年高一数学尖子生同步培优题典(人教A版2019必修第一册) 试卷 2 次下载
- 专题2.2 基本不等式-2020-2021学年高一数学尖子生同步培优题典(人教A版2019必修第一册) 试卷 3 次下载
专题1.5 全称量词与存在量词-2020-2021学年高一数学尖子生同步培优题典(人教A版2019必修第一册)
展开专题1.5 全称量词与存在量词
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.下列命题中是全称量词命题并且是真命题的是( )
A.∃x>1,x2-2x-3=0
B.若2x为偶数,则x∈N
C.所有菱形的四条边都相等
D.π是无理数
【答案】C
【解析】对于A,是存在量词命题,故A不正确;
对于B,是真命题,但不是全称量词命题,故B不正确;
对于C,是全称量词命题,也是真命题,故C正确;
对于D,是真命题,但不是全称量词命题,故D不正确,故选C.
2.命题“每一个四边形的四个顶点共圆”的否定是( )
A.存在一个四边形,它的四个顶点不共圆
B.存在一个四边形,它的四个顶点共圆
C.所有四边形的四个顶点共圆
D.所有四边形的四个顶点都不共圆
【答案】A
【解析】根据全称量词命题的否定是存在量词命题,得命题“每一个四边形的四个顶点共圆”的否定是“存在一个四边形的四个顶点不共圆”,故选A.
3.下列命题为真命题的是( )
A.存在x∈Q,使方程x-2=0有解
B.存在一个实数x,使x2+2x+4=0
C.有些整数只有两个正因数
D.所有的质数都是奇数
【答案】C
【解析】A.x-2=0⇔x=∉Q,故A错误;
B.∵x2+2x+4=(x+1)2+3≥3,∴存在一个实数x,使x2+2x+4=0错误.
C.∵2=1×2,∴有些整数只有两个正因数正确,
D.2是质数,但2不是奇数,故D错误,故选C.
4.设非空集合P,Q满足P∩Q=P,则( )
A.∀x∈Q,有x∈P B.∀x∉Q,有x∉P
C.∃x∉Q,使得x∈P D.∃x∈P,使得x∉Q
【答案】B
【解析】∵P∩Q=P,∴P⊆Q,如图,
∴A错误;B正确;C错误;D错误.故选B.
5.已知命题p:∃x>0,x+a-1=0,若p为假命题,则a的取值范围是( )
A.{a|a<-1} B.{a|a≥1}
C.{a|a>1} D.{a|a≤-1}
【答案】B
【解析】∵p为假命题,
∴綈p为真命题,即:∀x>0,x+a-1≠0,即x≠1-a,
∴1-a≤0,则a≥1.
∴a的取值范围是a≥1,故选B.
6.(2020·沈阳二中北校高三模拟)已知命题“,使”是假命题,则实数的取值范围是( )
A. B.
C. D.
【答案】B
【解析】因为命题“,使”是假命题,所以恒成立,所以,解得,故实数的取值范围是.
故选B.
7.(多选)下列命题的否定中,是全称量词命题且为真命题的有( )
A.∃x∈R,x2-x+<0
B.所有的正方形都是矩形
C.∃x∈R,x2+2x+2≤0
D.至少有一个实数x,使x3+1=0
【答案】AC
【解析】命题的否定是全称量词命题,即原命题为存在量词命题,故排除B.再根据命题的否定为真命题,即原命题为假命题.又D为真命题,故选A、C.
8.(多选)下列命题错误的是( )
A.∀x∈{-1,1},2x+1>0 B.∃x∈Q,x2=3
C.∀x∈R,x2-1>0 D.∃x∈N,|x|≤0
【答案】ABC
【解析】对于A,x=-1时,不合题意,A错误;
对于B,x=±,B错误;
对于C,比如x=0时,-1<0,C错误;D选项正确.
二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)
9.下列存在量词命题是真命题的序号是________.
①有些不相似的三角形面积相等;
②存在实数x,使x2+2<0;
③存在实数a,使函数y=ax+b的值随x的增大而增大;
④有一个实数的倒数是它本身.
【答案】①③④
【解析】①为真命题,只要找出等底等高的两个三角形,面积就相等,但不一定相似;②中对任意x∈R,x2+2>0,所以不存在实数x,使x2+2<0,为假命题;③中当实数a大于0时,结论成立,为真命题;④中如1的倒数是它本身,为真命题.故真命题的序号是①③④.
10.若命题p:∀x∈R,<0,则綈p:________________.
【答案】∃x∈R,>0或x-2=0
11.若命题p:∀a,b∈R,方程ax2+b=0恰有一解,则綈p:________________.
【答案】∃a,b∈R,方程ax2+b=0无解或至少有两解
12.某中学开展小组合作学习模式,某班某组小王同学给组内小李同学出题如下:若命题“∃x∈R,x2+2x+m≤0”是假命题,求m范围.小李略加思索,反手给了小王一道题:若命题“∀x∈R,x2+2x+m>0”是真命题,求m范围.你认为,两位同学题中m范围是否一致?________(填“是”“否”中的一种)
【答案】是
【解析】∵命题“∃x∈R,x2+2x+m≤0”的否定是“∀x∈R,x2+2x+m>0”.
而命题“∃x∈R,x2+2x+m≤0”是假命题,则其否定“∀x∈R,x2+2x+m>0”为真命题.
∴两位同学题中m范围是一致的.
三、解答题(本大题共4小题,共40分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
13.判断下列命题的真假,并写出这些命题的否定:
(1)三角形的内角和为180°;
(2)每个二次函数的图象都开口向下;
(3)存在一个四边形不是平行四边形.
【解析】(1)是全称量词命题且为真命题.
命题的否定:三角形的内角和不全为180°,即存在一个三角形其内角和不等于180°.
(2)是全称量词命题且为假命题.
命题的否定:存在一个二次函数的图象开口不向下.
(3)是存在量词命题且为真命题.
命题的否定:所有的四边形都是平行四边形.
14.写出下列命题的否定,并判断真假:
(1)正方形都是菱形;
(2)∃x∈R,使4x-3>x;
(3)∀x∈R,有x+1=2x;
(4)集合A是集合A∩B或集合A∪B的子集.
【解析】(1)命题的否定:正方形不都是菱形,是假命题.
(2)命题的否定:∀x∈R.有4x-3≤x.因为当x=2时,4×2-3=5>2,所以“∀x∈R,有4x-3≤x”是假命题.
(3)命题的否定:∃x∈R.使x+1≠2x.因为当x=2时,x+1=2+1=3≠2×2,所以“∃x∈R,使x+1≠2x”是真命题.
(4)命题的否定:集合A既不是集合A∩B的子集也不是集合A∪B的子集,是假命题.
15.写出下列命题的否定并判断真假:
(1)所有自然数的平方都是正数;
(2)任何实数x都是方程5x-12=0的根;
(3)∀x∈R,x2+3<0;
(4)有些质数不是奇数.
【解析】(1)命题的否定:至少存在一个自然数的平方不是正数.真命题.
(2)命题的否定:∃x∈R,5x-12≠0.真命题.
(3)命题的否定:∃x∈R,x2+3≥0.真命题.
(4)命题的否定:所有的质数都是奇数.假命题.
16.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B≠∅.
(1)若命题p:“∀x∈B,x∈A”是真命题,求m的取值范围;
(2)命题q:“∃x∈A,x∈B”是真命题,求m的取值范围.
【解析】(1)由于命题p:“∀x∈B,x∈A”是真命题,
所以B⊆A,B≠∅,
所以,解得2≤m≤3.
(2)q为真,则A∩B≠∅,因为B≠∅,所以m≥2.
所以,解得2≤m≤4.