







冀教版八年级下册第二十一章 一次函数综合与测试复习ppt课件
展开1.一次函数与正比例函数的概念
2.分段函数 当自变量的取值范围不同时,函数的表达式也不同,这样的函数称为分段函数.
3.一次函数的图象与性质
求一次函数表达式的一般步骤:(1)先设出函数表达式;(2)根据条件列关于待定系数的方程(组);(3)解方程(组)求出表达式中未知的系数;(4)把求出的系数代入设的表达式,从而具体写出这个解析式.这种求表达式的方法叫待定系数法.
4.用待定系数法求一次函数的表达式
求ax+b=0(a,b是 常数,a≠0)的解.
x为何值时,函数y= ax+b的值为0?
求ax+b=0(a, b是 常数,a≠0)的解.
求直线y= ax+b,与 x 轴交点的横坐标.
(1)一次函数与一元一次方程
一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个一次函数,也对应一条直线.
(2)一次函数与二元一次方程组
方程组的解 对应两条直线交点的坐标.
例1 已知函数y=(2m+1)x+m﹣3;(1)若该函数是正比例函数,求m的值;(2)若函数的图象平行直线y=3x﹣3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(4)若这个函数图象过点(1,4),求这个函数的表达式.
【分析】(1)由函数是正比例函数得m-3=0且2m+1≠0;(2)由两直线平行得2m+1=3;(3)一次函数中y随着x的增大而减小,即2m+1<0;(4)代入该点坐标即可求解.
解:(1)∵函数是正比例函数,∴m﹣3=0,且2m+1≠0, 解得m=3. (2)∵函数的图象平行于直线y=3x﹣3,∴2m+1=3, 解得m=1. (3)∵y随着x的增大而减小,∴2m+1<0,解得m< . (4)∵该函数图象过点(1,4),代入得2m+1+m-3=4, 解得m=2,∴该函数的表达式为y=5x-1.
一次函数的图象与y轴交点的纵坐标就是y=kx+b中b的值;两条直线平行,其函数表达式中的自变量系数k相等;当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
1.一次函数y=-5x+2的图象不经过第______象限.2.点(-1,y1),(2,y2)是直线y=2x+1上两点,则y1____y2.
3.填空题: 有下列函数:① , ② ,③ , ④ . 其中函数图象过原点的是_____;函数y随x的增大而增大的是________;函数y随x的增大而减小的是_____;图象在第一、二、三象限的是______.
例2 如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )
A.x>﹣2B.x>0C.x>1D.x<1
【分析】观察图象,两图象交点为P(1,3),当x>1时,y1在y2上方,据此解题即可.【答案】C.
本题考查了一次函数与一元一次不等式,从函数的角度看,就是寻求一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
4.方程x+2=0的解就是函数y=x+2的图象与( )A.x轴交点的横坐标 B.y轴交点的横坐标C.y轴交点的纵坐标 D.以上都不对5.两个一次函数y=-x+5和y=-2x+8的图象的交点坐标是 _________.
(1)问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个 A 种造型的成本是 800 元,搭配一个 B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
例3 为美化深圳市景,园林部门决定利用现有的 3490 盆甲种花卉和 2950 盆乙种花卉搭配 A、B 两种园艺造型共 50 个摆放在迎宾大道两侧,已知搭配一个 A 种造型需甲种花卉 80 盆,乙种花卉 40 盆,搭配一个 B 种造型需甲种花卉 50 盆,乙种花卉 90 盆.
解:设搭配 A 种造型 x 个,则 B 种造型为(50-x)个,
依题意,得
∴31≤x≤33.∵x 是整数,x 可取 31,32,33,∴可设计三种搭配方案:①A 种园艺造型 31 个,B 种园艺造型 19 个;②A 种园艺造型 32 个,B 种园艺造型 18 个;③A 种园艺造型 33 个,B 种园艺造型 17 个.
方案①需成本:31×800+19×960=43040(元);
方案②需成本:32×800+18×960=42880(元);
方案③需成本:33×800+17×960=42720(元).
y=800x+960(50-x)=-160x+48000(31≤x≤33).
根据一次函数的性质,y 随 x 的增大而减小,
故当 x=33 时,y 取得最小值为
33×800+17×960=42720(元).
即最低成本是 42720 元.
用一次函数解决实际问题,先理解清楚题意,把文字语言转化为数学语言,列出相应的不等式(方程),若是方案选择问题,则要求出自变量在取不同值时所对应的函数值,判断其大小关系,结合实际需求,选择最佳方案.
6.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是多少升?
解:设一次函数的表达式为y=kx+35,将(160,25)代入,得160k+35=25,解得k= ,所以一次函数的表达式为y= x+35.再将x=240代入 y= x+35,得y= ×240+35=20,即到达乙地时油箱剩余油量是20升.
7.小星以2米/秒的速度起跑后,先匀速跑5秒,然后突然把速度提高4米/秒,又匀速跑5秒.试写出这段时间里他的跑步路程s(单位:米)随跑步时间x(单位:秒)变化的函数关系式,并画出函数图象.
s=2x (0≤x≤5)
s=10+6(x-5) (5
冀教版八年级下册第十八章 数据的收集与整理综合与测试复习ppt课件: 这是一份冀教版八年级下册第十八章 数据的收集与整理综合与测试复习ppt课件,共34页。PPT课件主要包含了统计的初步认识,要点梳理,实际问题,搜集数据,整理数据,表示数据,统计分析,合理决策,统计的一般过程,收集数据的方法等内容,欢迎下载使用。
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习ppt课件: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习ppt课件,共22页。PPT课件主要包含了有序数对,列号写在前面,方位角和距离,平面直角坐标系,坐标与图形的位置,坐标与图形的变化,向右平移a个单位,向左平移a个单位,向上平移a个单位,向下平移a个单位等内容,欢迎下载使用。
数学冀教版第二十章 函数综合与测试复习ppt课件: 这是一份数学冀教版第二十章 函数综合与测试复习ppt课件,共19页。PPT课件主要包含了常量和变量的概念,要点梳理,函数的概念,函数的表示,数值表和图像,函数的应用,考点讲练,不是高也是变量,x为任意实数,x≥3等内容,欢迎下载使用。