- 垂径定理—知识讲解(基础) 学案 5 次下载
- 垂径定理—巩固练习(提高) 试卷 5 次下载
- 弧、弦、圆心角、圆周角—巩固练习(基础) 试卷 6 次下载
- 弧、弦、圆心角、圆周角--知识讲解(基础) 学案 5 次下载
- 弧、弦、圆心角、圆周角—巩固练习(提高) 试卷 11 次下载
初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径优秀学案及答案
展开【学习目标】
理解圆的对称性;
掌握垂径定理及其推论;
3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题.
【要点梳理】
知识点一、垂径定理
1.垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
2.推论
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
要点诠释:
(1)垂径定理是由两个条件推出两个结论,即
(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.
知识点二、垂径定理的拓展
根据圆的对称性及垂径定理还有如下结论:
平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
圆的两条平行弦所夹的弧相等.
要点诠释:
在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)
【典型例题】
类型一、应用垂径定理进行计算与证明
1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是 .
【答案】 eq \r(,5).
【解析】作OM⊥AB于M、ON⊥CD于N,连结OA,
∵AB=CD,CE=1,ED=3,
∴OM=EN=1,AM=2,
∴OA=.
【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.
举一反三:
【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.
【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,
∴
,
,
∴ 在Rt△BOM中,.
356965 例2-例3
【变式2】(2015春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.
【答案与解析】解:过O作OF⊥CD,交CD于点F,连接OD,
∴F为CD的中点,即CF=DF,
∵AE=2,EB=6,
∴AB=AE+EB=2+6=8,
∴OA=4,
∴OE=OA﹣AE=4﹣2=2,
在Rt△OEF中,∠DEB=30°,
∴OF=OE=1,
在Rt△ODF中,OF=1,OD=4,
根据勾股定理得:DF==,
则CD=2DF=2.
356965 例2-例3
2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.
【思路点拨】
在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.
【答案与解析】
(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,
并延长MO,交CD于N点.分别连结AO、CO.
∵AB∥CD
∴ON⊥CD,即ON为弦CD的弦心距.
∵AB=12cm,CD=16cm,AO=OC=10cm,
=8+6
=14(cm)
图1 图2
(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,
同理可得:MN=OM-ON=8-6=2(cm)
∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.
【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.
举一反三:
【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.
【答案】2或8.
类型二、垂径定理的综合应用
3.(2015•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)
【答案与解析】
解:过点O作OD⊥AC于点D,则AD=BD,
∵∠OAB=45°,
∴AD=OD,
∴设AD=x,则OD=x,OA=x,CD=x+BC=x+50.
∵∠OCA=30°,
∴=,即=,
解得x=,
∴OA=x=×()=()(米).
答:人工湖的半径为()米.
【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.
(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;
(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);
(3)请你选择(1)中的一个图形,证明(2)所得出的结论.
【答案与解析】
(1)如图所示,
在图①中AB、CD延长线交于⊙O外一点;
在图②中AB、CD交于⊙O内一点;
在图③中AB∥CD.
(2)在三个图形中均有结论:线段EC=DF.
(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.
∵ AE⊥l于E,BF⊥l于F,
∴ AE∥OG∥BF.
∵ AB为直径,
∴ AO=OB,
∴ EG=GF,
∴ EC=EG-CG=GF-GD=DF.
【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.
37角(提高)知识讲解学案: 这是一份37角(提高)知识讲解学案,共10页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
2020-2021学年4.3.1 角学案设计: 这是一份2020-2021学年4.3.1 角学案设计,共10页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
数学4.3.1 角学案: 这是一份数学4.3.1 角学案,共10页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。