![切线长定理—知识讲解(提高)第1页](http://img-preview.51jiaoxi.com/2/3/5842810/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![切线长定理—知识讲解(提高)第2页](http://img-preview.51jiaoxi.com/2/3/5842810/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![切线长定理—知识讲解(提高)第3页](http://img-preview.51jiaoxi.com/2/3/5842810/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教版九年级上册数学同步备课学案和试卷(含答案解析)
- 切线长定理—知识讲解(基础) 学案 4 次下载
- 切线长定理—巩固练习(提高) 试卷 4 次下载
- 正多边形和圆—巩固练习(基础) 试卷 3 次下载
- 正多边形和圆—知识讲解(基础) 学案 4 次下载
- 正多边形和圆—巩固练习(提高) 试卷 4 次下载
初中数学人教版九年级上册24.2.2 直线和圆的位置关系优秀学案及答案
展开这是一份初中数学人教版九年级上册24.2.2 直线和圆的位置关系优秀学案及答案,共6页。学案主要包含了学习目标,要点梳理,典型例题,答案与解析,总结升华等内容,欢迎下载使用。
【学习目标】
1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;
2.掌握切线长定理;利用切线长定理解决相关的计算和证明.
【要点梳理】
要点一、切线的判定定理和性质定理
1.切线的判定定理:
经过半径的外端并且垂直于这条半径的直线是圆的切线.
要点诠释:
切线的判定方法:
(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;
(2)定理:和圆心的距离等于半径的直线是圆的切线;
(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).
2.切线的性质定理:
圆的切线垂直于过切点的半径.
要点诠释:
切线的性质:
(1)切线和圆只有一个公共点;
(2)切线和圆心的距离等于圆的半径;
(3)切线垂直于过切点的半径;
(4)经过圆心垂直于切线的直线必过切点;
(5)经过切点垂直于切线的直线必过圆心.
要点二、切线长定理
1.切线长:
经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.
要点诠释:
切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.
2.切线长定理:
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
要点诠释:
切线长定理包含两个结论:线段相等和角相等.
3.圆外切四边形的性质:
圆外切四边形的两组对边之和相等.
要点三、三角形的内切圆
1.三角形的内切圆:
与三角形各边都相切的圆叫做三角形的内切圆.
2.三角形的内心:
三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.
要点诠释:
(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;
(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).
(3) 三角形的外心与内心的区别:
【典型例题】
类型一、切线长定理
1. 如图,等腰三角形中,,.以为直径作⊙O交于点,交于点,,垂足为,交的延长线于点.求证:直线是⊙O的切线.
【答案与解析】
如图,连结OD、,则.
∴.
∵ ,∴.
∴是的中点.
∵是的中点,
∴.
∵于F.
∴.
∴是⊙O的切线.
【总结升华】连半径,证垂直.
举一反三:
【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.
求证:BC和⊙O相切.
【答案】
作OE⊥BC,垂足为E,
∵ AB∥DC,∠B=90°,
∴ OE∥AB∥DC,
∵ OA=OD,
∴ EB=EC,
∴ BC是⊙O的切线.
2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,
求证:DC是⊙O的切线.
【答案与解析】
连接OD.
∵ OA=OD,∴∠1=∠2.
∵ AD∥OC, ∴∠1=∠3,∠2=∠4.
因此 ∠3=∠4.
又∵ OB=OD,OC=OC,∴ △OBC≌△ODC.
∴∠OBC=∠ODC.
∵BC是⊙O的切线,∴∠OBC=90°,
∴∠ODC=90°, ∴ DC是⊙O的切线.
【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.
举一反三:
356967 练习题精讲
【变式】已知:∠MAN=30°,O为边AN上一点,以O为圆心、2为半径作⊙O,交AN于D、E两点,
设AD=,⑴如图⑴当取何值时,⊙O与AM相切;
⑵如图⑵当为何值时,⊙O与AM相交于B、C两点,且∠BOC=90°.
M
A
N
E
D
O
图(1)
.
M
A
N
E
D
B
C
O
图(2)
【答案】
(1)设AM与⊙O相切于点B,并连接OB,则OB⊥AB;
在△AOB中,∠A=30°,
则AO=2OB=4,
所以AD=AO-OD,
即AD=2.x=AD=2.
(2)过O点作OG⊥AM于G
∵OB=OC=2,∠BOC=90°,
∴BC=,∵OG⊥BC,∴BG=CG=,
∴OG=,∵∠A=30°
∴OA=,
∴x=AD=-2
类型二、三角形的内切圆
3.(2015•西青区二模)已知四边形ABCD中,AB∥CD,⊙O为内切圆,E为切点.
(Ⅰ)如图1,求∠AOD的度数;
(Ⅱ)如图1,若AO=8cm,DO=6cm,求AD、OE的长;
(Ⅲ)如图2,若F是AD的中点,在(Ⅱ)中条件下,求FO的长.
【答案与解析】解:(Ⅰ)∵⊙O为四边形ABCD的内切圆,
∴AD、AB、CD为⊙O的切线,
∴OD平分∠ADC,OA平分∠BAD,
即∠ODA=∠ADC,∠OAD=∠BAC,
∵AB∥CD,
∴∠ADC+∠BAC=180°,
∴∠ODA+∠OAD=90°,
∴∠AOD=90°;
(Ⅱ)在Rt△AOD中,∵AO=8cm,DO=6cm,
∴AD==10(cm),
∵AD切⊙O于E,
∴OE⊥AD,
∴OE•AD=OD•OA,
∴OE==(cm);
(Ⅲ)∵F是AD的中点,
∴FO=AD=×10=5(cm).
【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理.
类型三、与相切有关的计算与证明
356967 经典例题4
4.(2015•常德)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为3,∠EAC=60°,求AD的长.
【答案与解析】
证明:(1)如图1,连接FO,
∵F为BC的中点,AO=CO,
∴OF∥AB,
∵AC是⊙O的直径,
∴CE⊥AE,
∵OF∥AB,
∴OF⊥CE,
∴OF所在直线垂直平分CE,
∴FC=FE,OE=OC,
∴∠FEC=∠FCE,∠0EC=∠0CE,
∵∠ACB=90°,
即:∠0CE+∠FCE=90°,
∴∠0EC+∠FEC=90°,
即:∠FEO=90°,
∴FE为⊙O的切线;
(2)如图2,∵⊙O的半径为3,
∴AO=CO=EO=3,
∵∠EAC=60°,OA=OE,
∴∠EOA=60°,
∴∠COD=∠EOA=60°,
∵在Rt△OCD中,∠COD=60°,OC=3,
∴CD=,
∵在Rt△ACD中,∠ACD=90°,
CD=,AC=6,
∴AD=.
【总结升华】本题是一道综合性很强的习题,考查了切线的判定和性质,三角形的中位线的性质,勾股定理,线段垂直平分线的性质等,熟练掌握定理是解题的关键.
名称
确定方法
图形
性质
外心(三角形外接圆的圆心)
三角形三边中垂线的交点
(1)OA=OB=OC;(2)外心不一定在三角形内部
内心(三角形内切圆的圆心)
三角形三条角平分线的交点
(1)到三角形三边距离相等;(2)OA、OB、OC分别平分
∠BAC、∠ABC、∠ACB;
(3)内心在三角形内部.
相关学案
这是一份37角(提高)知识讲解学案,共10页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
这是一份2020-2021学年4.3.1 角学案设计,共10页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
这是一份数学4.3.1 角学案,共10页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。