![2020-2021学年新教材人教A版选择性必修第二册 4.3.2 第1课时 等比数列的前n项和公式 作业第1页](http://img-preview.51jiaoxi.com/3/3/5843832/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020-2021学年新教材人教A版选择性必修第二册 4.3.2 第1课时 等比数列的前n项和公式 作业第2页](http://img-preview.51jiaoxi.com/3/3/5843832/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020-2021学年新教材人教A版选择性必修第二册 4.3.2 第1课时 等比数列的前n项和公式 作业第3页](http://img-preview.51jiaoxi.com/3/3/5843832/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
选择性必修 第二册第四章 数列4.3 等比数列精品第1课时练习
展开
这是一份选择性必修 第二册第四章 数列4.3 等比数列精品第1课时练习,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
(建议用时:40分钟)
一、选择题
1.设等比数列{an}的前n项和为Sn,若S2=3,S4=15,则S6=( )
A.31 B.32 C.63 D.64
C [在等比数列{an}中,S2、S4-S2、S6-S4也成等比数列,故(S4-S2)2=S2(S6-S4),则(15-3)2=3(S6-15),解得S6=63.]
2.已知{an}是等比数列,a3=1,a6=eq \f(1,8),则a1a2+a2a3+…+anan+1等于( )
A.16(1-4-n)B.16(1-2-n)
C.eq \f(32,3)(1-4-n)D.eq \f(32,3)(1-2-n)
C [∵a3=1,a6=eq \f(1,8),∴q=eq \f(1,2),∴a1=4,
∴a1a2=8,
∵eq \f(anan+1,an-1an) =q2=eq \f(1,4)
∴数列{anan+1}是以8为首项,eq \f(1,4)为公比的等比数列.
∴a1a2+a2a3+…+anan+1=eq \f(32,3)(1-4-n).]
3.设公比为q(q>0)的等比数列{an}的前n项和为Sn.若S2=3a2+2,S4=3a4+2,则a1=( )
A.-2B.-1
C.eq \f(1,2)D.eq \f(2,3)
B [由S2=3a2+2,S4=3a4+2得a3+a4=3a4-3a2,即q+q2=3q2-3,解得q=-1(舍)或q=eq \f(3,2),将q=eq \f(3,2)代入S2=3a2+2中得a1+eq \f(3,2)a1=3×eq \f(3,2)a1+2,解得a1=-1.故选B. ]
4.已知{an}是首项为1的等比数列,Sn是其前n项和,且9S3=S6,则数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))的前5项和等于( )
A.eq \f(15,8)或5 B.eq \f(31,16)或5 C.eq \f(31,16)D.eq \f(15,8)
C [设数列{an}的公比为q,显然q≠1,由已知得eq \f(91-q3,1-q)=eq \f(1-q6,1-q),解得q=2(q=1舍去),∴数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是以1为首项,eq \f(1,2)为公比的等比数列,前5项和为eq \f(1×\b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(5))),1-\f(1,2))=eq \f(31,16).]
5.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏B.3盏
C.5盏D.9盏
B [设塔的顶层的灯数为a1,七层塔的总灯数为S7,公比为q,则由题意知S7=381,q=2,
∴S7=eq \f(a11-q7,1-q)=eq \f(a11-27,1-2)=381,解得a1=3.
故选B.]
二、填空题
6.在等比数列{an}中,若a1=eq \f(1,2),a4=-4,则|a1|+|a2|+…+|an|=________.
2n-1-eq \f(1,2) [由a4=a1q3得q=-2,∴an=eq \f(1,2)(-2)n-1,
∴|an|=2n-2.∴|a1|+|a2|+…+|an|=eq \f(\f(1,2)1-2n,1-2)=2n-1-eq \f(1,2).]
7.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=________.
6 [∵a1=2,an+1=2an,
∴数列{an}是首项为2,公比为2的等比数列,
又∵Sn=126,∴eq \f(21-2n,1-2)=126,∴n=6.]
8.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.
6 [由题意知,第n天植树2n棵,则前n天共植树2+22+…+2n=(2n+1-2)棵,令2n+1-2≥100,则2n+1≥102,
又26=64,27=128,且{2n+1}单调递增,所以n≥6,即n的最小值为6.]
三、解答题
9.等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.
(1)求{an}的公比q;
(2)若a1-a3=3,求Sn.
[解] (1)依题意有a1+(a1+a1q)=2(a1+a1q+a1q2),
由于a1≠0,故2q2+q=0.
又q≠0,从而q=-eq \f(1,2).
(2)由已知可得a1-a1eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))eq \s\up12(2)=3,
故a1=4.
从而Sn=eq \f(4\b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))eq \s\up12(n))),1-\b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2))))=eq \f(8,3)eq \b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))eq \s\up12(n))).
10.已知正项等差数列{an}的前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列.
(1)求{an}的通项公式;
(2)记bn=eq \f(an,3n)的前n项和为Tn,求Tn.
[解] (1)设正项等差数列{an}的公差为d,则d>0.∵S3=12,即a1+a2+a3=12,∴3a2=12,∴a2=4.又2a1,a2,a3+1成等比数列,∴aeq \\al(\s\up1(2),\s\d1(2))=2a1·(a3+1),即42=2(4-d)·(4+d+1),解得d=3或d=-4(舍去),∴a1=a2-d=1,故an=3n-2.
(2)bn=eq \f(an,3n)=eq \f(3n-2,3n)=(3n-2)×eq \f(1,3n),
∴Tn=1×eq \f(1,3)+4×eq \f(1,32)+7×eq \f(1,33)+…+(3n-2)×eq \f(1,3n).①
①×eq \f(1,3)得eq \f(1,3)Tn=1×eq \f(1,32)+4×eq \f(1,33)+7×eq \f(1,34)+…+(3n-5)×eq \f(1,3n)+(3n-2)×eq \f(1,3n+1).②
①-②得,eq \f(2,3)Tn=eq \f(1,3)+3×eq \f(1,32)+3×eq \f(1,33)+3×eq \f(1,34)+…+3×eq \f(1,3n)-(3n-2)×eq \f(1,3n+1)=eq \f(1,3)+3×eq \f(\f(1,32)\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3n-1))),1-\f(1,3))-(3n-2)×eq \f(1,3n+1)=eq \f(5,6)-eq \f(1,2)×eq \f(1,3n-1)-(3n-2)×eq \f(1,3n+1),
∴Tn=eq \f(5,4)-eq \f(1,4)×eq \f(1,3n-2)-eq \f(3n-2,2)×eq \f(1,3n)=eq \f(5,4)-eq \f(6n+5,4)×eq \f(1,3n).
11.(多选题)设等比数列eq \b\lc\{\rc\}(\a\vs4\al\c1(an))的公比为q,其前n项和为Sn,前n项积为Tn,并且满足条件a1>1,a7a8>1,eq \f(a7-1,a8-1)
相关试卷
这是一份数学第四章 数列4.3 等比数列第1课时练习题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份数学选择性必修 第二册4.3 等比数列第1课时课后作业题,共7页。
这是一份高中数学人教A版 (2019)选择性必修 第二册4.3 等比数列第1课时习题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。