【精品试卷】中考数学一轮复习 专题测试19 轴对称与等腰三角形(培优提高)(教师版)
展开专题19 轴对称与等腰三角形(专题测试-提高)
学校:___________姓名:___________班级:___________考号:___________
一、 选择题(共12小题,每小题4分,共48分)
1.(2011·河北中考模拟)在等腰△ABC中,AB=AC,一腰上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( )
A.7 B.7或11 C.11 D.7或10
【答案】B
【详解】
解:设这个等腰三角形的腰长为a,底边长为b.
∵D为AC的中点,
∴AD=DC=AC=a.
根据题意得或
解得或
又∵三边长为10,10,7和8,8,11均可以构成三角形.
∴这个等腰三角形的底边长为7或11.
2.(2018·福建中考真题)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )
A.15° B.30° C.45° D.60°
【答案】A
【详解】
∵等边三角形ABC中,AD⊥BC,
∴BD=CD,即:AD是BC的垂直平分线,
∵点E在AD上,
∴BE=CE,
∴∠EBC=∠ECB,
∵∠EBC=45°,
∴∠ECB=45°,
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠ACE=∠ACB-∠ECB=15°,
故选A.
3.(2018·湖北中考真题)如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l1和l2上,∠1=20°,则∠2的度数是( )
A.45° B.55° C.65° D.75°
【答案】C
【详解】∵l1∥l2,
∴∠1+∠CAB=∠2,
∵Rt△ACB中,∠C=90°,AC=BC,
∴∠CAB=45°,
∴∠2=20°+45°=65°,
故选C.
4.(2019·四川中考模拟)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
A.﹣5 B.﹣3 C.3 D.1
【答案】D
【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,
∴1+m=3、1﹣n=2,
解得:m=2、n=﹣1,
所以m+n=2﹣1=1,
故选D.
5.(2019·江苏中考模拟)已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为( )
A.2 B.﹣4 C.﹣1 D.3
【答案】C
【详解】
∵点,,直线轴,
,
解得.
故选:C.
6.(2018·江苏中考真题)若实数m、n满足 ,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是 ( )
A.12 B.10 C.8 D.6
【答案】B
【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,
又∵m、n恰好是等腰△ABC的两条边的边长,
①若腰为2,底为4,此时不能构成三角形,舍去,
②若腰为4,底为2,则周长为:4+4+2=10,
故选B.
7.(2019·天津中考模拟)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为( )
A.66° B.104° C.114° D.124°
【答案】C
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ACD=∠BAC,
由折叠的性质得:∠BAC=∠B′AC,
∴∠BAC=∠ACD=∠B′AC=∠1=22°
∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;
故选C.
8.(2019·山东中考模拟)如图,把直角三角形ABO放置在平面直角坐标系中,已知,B点的坐标为,将沿着斜边AB翻折后得到,则点C的坐标是
A.B.C.D.
【答案】C
【详解】
,,,
≌,
,,
过点C作轴,垂直为D,则,
,,
,
故选C.
9.(2018·江苏中考真题)在中,,于,平分交于,则下列结论一定成立的是( )
A. B. C. D.
【答案】C
∵∠ACB=90°,CD⊥AB,
∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,
∴∠BCD=∠A.
∵CE平分∠ACD,
∴∠ACE=∠DCE.
又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,
∴∠BEC=∠BCE,
∴BC=BE.
故选C.
10.(2018·黑龙江中考模拟)如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为
A. B. C. D.
【答案】B
【详解】
设∠ABE=x,
根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故选:B
11.(2019·山东中考模拟)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为( )
A. B. C.5 D.
【答案】D
【解析】
解:设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴ AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离.
在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE= ==,即PA+PB的最小值为.故选D.
12.(2019·山东省临沂实验中学中考模拟)如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于( )
A.132° B.134° C.136° D.138°
【答案】B
【解析】
解:
过E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠C=∠FEC,∠BAE=∠FEA,
∵∠C=44°,∠AEC为直角,
∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
∴∠1=180°﹣∠BAE=180°﹣46°=134°,
故选B.
二、 填空题(共5小题,每小题4分,共20分)
13.(2018·山东中考模拟)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.
【答案】
【详解】∵AB=AC,∠A=36°,
∴∠B=∠ACB==72°,
∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,
∴AE=CE,∠A=∠ECA=36°,
∴∠CEB=72°,
∴BC=CE=AE=,
故答案为.
14.(2018·江苏中考模拟)如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.
【答案】75
【解析】
因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,
因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.
所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.
所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,
所以∠BAE=15°,所以∠AEB=90°-15°=75°.
故答案为75.
15.(2018·广东中考模拟)如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_____cm
【答案】
【详解】
∵AD是BC边上的高,CE是AB边上的高,
∴AB•CE=BC•AD,
∵AD=6,CE=8,
∴=,
∴=,
∵AB=AC,AD⊥BC,
∴BD=DC=BC,
∵AB2−BD2=AD2,
∴AB2=BC2+36,即BC2=BC2+36,
解得:BC=.
故答案为:.
16.(2019·江西中考模拟)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.
【答案】3.6或4.32或4.8
【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,
∴AB==5,S△ABC=AB•BC=6.
沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:
①当AB=AP=3时,如图1所示,
S等腰△ABP=•S△ABC=×6=3.6;
②当AB=BP=3,且P在AC上时,如图2所示,
作△ABC的高BD,则BD=,
∴AD=DP==1.8,
∴AP=2AD=3.6,
∴S等腰△ABP=•S△ABC=×6=4.32;
③当CB=CP=4时,如图3所示,
S等腰△BCP=•S△ABC=×6=4.8;
综上所述:等腰三角形的面积可能为3.6或4.32或4.8,
故答案为:3.6或4.32或4.8.
17.(2018·广西中考真题)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是_____.
【答案】2<AD<8
【详解】如图,延长BC交AD的延长线于E,作BF⊥AD于F,
在Rt△ABE中,∵∠E=30°,AB=4,
∴AE=2AB=8,
在Rt△ABF中,AF=AB=2,
∴AD的取值范围为2<AD<8,
故答案为:2<AD<8.
三、 解答题(共4小题,每小题8分,共32分)
18.(2019·江苏中考模拟)如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG=CF;
(2)请你判断BE+CF与EF的大小关系,并说明理由.
【答案】(1)证明见解析;(2)BE+CF>EF.理由见解析.
【详解】
(1)∵BG∥AC,
∴∠DBG=∠DCF.
∵D为BC的中点,
∴BD=CD
又∵∠BDG=∠CDF,
在△BGD与△CFD中,
∴△BGD≌△CFD(ASA).
∴BG=CF.
(2)BE+CF>EF.
∵△BGD≌△CFD,
∴GD=FD,BG=CF.
又∵DE⊥FG,
∴EG=EF.
∴在△EBG中,BE+BG>EG,即BE+CF>EF.
19.(2018·浙江中考真题)数学课上,张老师举了下面的例题:
例1 等腰三角形中,,求的度数.(答案:)
例2 等腰三角形中,,求的度数.(答案:或或)
张老师启发同学们进行变式,小敏编了如下一题:
变式 等腰三角形中,,求的度数.
(1)请你解答以上的变式题.
(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.
【答案】(1)或或;(2)当且,有三个不同的度数.
【解答】(1)当为顶角,则,
当为底角,若为顶角,则,
若为底角,则,
∴或或.
(2)分两种情况:
①当时,只能为顶角,
∴的度数只有一个.
②当时,
若为顶角,则,
若为底角,则或,
当且且,即时,
有三个不同的度数.
综上①②,当且,有三个不同的度数.
20.(2018·江苏中考真题)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.
【答案】(A类)证明见解析;(B类)证明见解析.
【详解】(A类)连接AC,
∵AB=AC,AD=CD,
∴∠BAC=∠BCA,∠DAC=∠DCA,
∴∠BAC+∠DAC=∠BCA+∠DCA,
即∠BAD=∠BCD;
(B类)连接AC,
∵AB=BC,
∴∠BAC=∠BCA,
又∵∠BAD=∠BCD,即∠BAC+∠DAC=∠BCA+∠DCA,
∴∠DAC=∠DCA,
∴AD=CD.
21.(2016·江苏中考真题)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O
(1)求证:OB=OC;
(2)若∠ABC=50°,求∠BOC的度数.
【答案】(1)证明见解析;(2)∠BOC=1000
【解析】
(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;
(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.