【精品试卷】中考数学一轮复习 专题测试23 圆(培优提高)(教师版)
展开专题23 圆(专题测试-提高)
学校:___________姓名:___________班级:___________考号:___________
一、 选择题(共12小题,每小题4分,共48分)
1.(2019·山东中考模拟)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )
A.10cm B.15cm C.10cm D.20cm
【答案】D
【详解】
过O作OE⊥AB于E,如图所示.
∵OA=OB=60cm,∠AOB=120°,
∴∠A=∠B=30°,
∴OE= OA=30cm,
∴弧CD的长==20π,
设圆锥的底面圆的半径为r,则2πr=20π,
解得r=10,
∴由勾股定理可得圆锥的高为:cm.
故选D.
2.(2018·山东中考真题)如图,与相切于点,若,则的度数为( )
A. B. C. D.
【答案】A
【解析】
详解:如图,连接OA、OB.
∵BM是⊙O的切线,∴∠OBM=90°.
∵∠MBA=140°,∴∠ABO=50°.
∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.
故选A.
3.(2019·云南中考真题)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4 B.6.25 C.7.5 D.9
【答案】A
【详解】
∵AB=5,BC=13,CA=12,
∴AB2+AC2=BC2,
∴△ABC为直角三角形,且∠BAC=90°,
∵⊙O为△ABC内切圆,
∴∠AFO=∠AEO=90°,且AE=AF,
∴四边形AEOF为正方形,
设⊙O的半径为r,
∴OE=OF=r,
∴S四边形AEOF=r²,
连接AO,BO,CO,
∴S△ABC=S△AOB+S△AOC+S△BOC,
∴,
∴r=2,
∴S四边形AEOF=r²=4,
故选A.
4.(2018·江苏中考模拟)如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A.若△OPA的面积为S,则当x增大时,S的变化情况是( )
A.S的值增大 B.S的值减小
C.S的值先增大,后减小 D.S的值不变
【答案】D
【详解】
作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.
∵S△POB=|k|,∴S=2k,∴S的值为定值.
故选D.
5.(2018·山东中考真题)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )
A. B.2 C.2 D.8
【答案】C
【详解】
作OH⊥CD于H,连结OC,如图,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,∵∠OPH=30°,
∴∠POH=30°,∴OH=OP=1,
在Rt△OHC中,∵OC=4,OH=1,
∴CH=,
∴CD=2CH=2.
故选C.
6.(2019·四川中考真题)如图,的直径垂直于弦,垂足是点,,,则的长为( )
A. B. C.6 D.12
【答案】A
【详解】
∵,AB为直径,
∴,
∵∠BOC和∠A分别为所对的圆心角和圆周角,∠A=22.5°,
∴,
∴为等腰直角三角形,
∵OC=6,
∴,
∴.
故选A.
7.(2019·湖南中考真题)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为( )
A.﹣2 B.﹣1 C.0 D.1
【答案】B
【详解】
解:点运动一个用时为秒.
如图,作于D,与交于点E.
在中,∵,,
∴,
∴,
∴,
∴第1秒时点P运动到点E,纵坐标为1;
第2秒时点P运动到点B,纵坐标为0;
第3秒时点P运动到点F,纵坐标为﹣1;
第4秒时点P运动到点G,纵坐标为0;
第5秒时点P运动到点H,纵坐标为1;
…,
∴点P的纵坐标以1,0,﹣1,0四个数为一个周期依次循环,
∵,
∴第2019秒时点P的纵坐标为是﹣1.
故选:B.
8.(2019·浙江中考模拟)如图,AB是圆锥的母线,BC为底面半径,已知BC=6cm,圆锥的侧面积为15πcm2,则sin∠ABC的值为( )
A. B. C. D.
【答案】C
【解析】
设圆锥的母线长为R,由题意得
15π=π×3×R,解得R=5,
∴圆锥的高为4,
∴sin∠ABC=.
故选C.
9.(2018·湖北中考真题)如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为( )
A.(﹣2,3) B.(﹣3,2) C.(3,﹣2) D.(2,﹣3)
【答案】A
【详解】过点作IF⊥AC于点F,IE⊥OA于点E,
∵A(4,0),B(0,3),C(4,3),
∴BC=4,AC=3,
则AB=5,
∵I是△ABC的内心,
∴I到△ABC各边距离相等,等于其内切圆的半径,
∴IF=1,故I到BC的距离也为1,
则AE=1,
故IE=3﹣1=2,
OE=4﹣1=3,
则I(3,2),
∵△ABC绕原点逆时针旋转90°,
∴I的对应点I'的坐标为:(﹣2,3),
故选A.
10.(2019·浙江中考真题)如图物体由两个圆锥组成,其主视图中,.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )
A.2 B. C. D.
【答案】D
【详解】
∵∠A=90°,AB=AD,
∴△ABD为等腰直角三角形,
∴∠ABD=45°,BD=AB,
∵∠ABC=105°,
∴∠CBD=60°,
而CB=CD,
∴△CBD为等边三角形,
∴BC=BD=AB,
∵上面圆锥与下面圆锥的底面相同,
∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,
∴下面圆锥的侧面积=×1=.
故选D.
11.(2019·四川成都外国语学校中考模拟)如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )
A.相切 B.相交 C.相离 D.无法确定
【答案】B
【详解】
过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM===2.4.
∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.
∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.
故选B.
12.(2019·浙江中考真题)如图,内接于圆,,,若,则弧的长为( )
A. B. C. D.
【答案】A
【详解】
连接OB,OC.
∵∠A=180°-∠ABC-∠ACB=180°-65°-70°=45°,
∴∠BOC=90°,
∵BC=2,
∴OB=OC=2,
∴的长为=π,
故选A.
二、 填空题(共5小题,每小题4分,共20分)
13.(2018·湖北中考真题)已知的半径为,,是的两条弦,,,,则弦和之间的距离是__________.
【答案】2或14
【解析】
①当弦AB和CD在圆心同侧时,如图,
∵AB=16cm,CD=12cm,
∴AE=8cm,CF=6cm,
∵OA=OC=10cm,
∴EO=6cm,OF=8cm,
∴EF=OF-OE=2cm;
②当弦AB和CD在圆心异侧时,如图,
∵AB=16cm,CD=12cm,
∴AF=8cm,CE=6cm,
∵OA=OC=10cm,
∴OF=6cm,OE=8cm,
∴EF=OF+OE=14cm.
∴AB与CD之间的距离为14cm或2cm.
故答案为:2或14.
14.(2019·四川成都外国语学校中考模拟)如图,⊙O的内接五边形ABCDE的对角线AC与BD相交于点G,若∠E=92°,∠BAC=41°,则∠DGC=_____°.
【答案】51°
【详解】
根据圆内接四边形对角互补,∠DCA=180°-∠E=88°,又∠ABG=∠DCA =88°,在△AGB中∠AGB=180°-∠ABG-∠BAC=51°,∠DGC=∠AGB=51°.
15.(2019·广东中考模拟)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.
【答案】
【详解】如图,连接OE、AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∵四边形ABCD是平行四边形,
∴AB=CD=4,∠B=∠D=30°,
∴AE=AB=2,BE==2,
∵OA=OB=OE,
∴∠B=∠OEB=30°,
∴∠BOE=120°,
∴S阴影=S扇形OBE﹣S△BOE
=
=,
故答案为.
16.(2018·广西中考真题)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是_____cm.
【答案】10
【详解】
如图,
记圆的圆心为O,连接OB,OC交AB于D,
∴OC⊥AB,BD=AB,
由图知,AB=16﹣4=12cm,CD=2cm,
∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,
在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,
∴r2=36+(r﹣2)2,
∴r=10cm,
故答案为10.
17.(2018·云南中考模拟)同一个圆的内接正方形和正三角形的边心距的比为_____.
【答案】
【详解】设⊙O的半径为r,⊙O的内接正方形ABCD,如图,
过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,
∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,
∴O为正方形ABCD的中心,
∴∠BOC=90°,
∵OQ⊥BC,OB=CO,
∴QC=BQ,∠COQ=∠BOQ=45°,
∴OQ=OC×cos45°=R;
设⊙O的内接正△EFG,如图,
过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,
∵正△EFG是⊙O的外接圆,
∴∠OGF=∠EGF=30°,
∴OH=OG×sin30°=R,
∴OQ:OH=(R):(R)=:1,
故答案为::1.
三、 解答题(共4小题,每小题8分,共32分)
18.(2018·上海中考模拟)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.
(1)求证:AD=AN;
(2)若AE=,ON=1,求⊙O的半径.
【答案】(1)证明见解析;(2)3;
【详解】
(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,
∴∠BAD=∠BCD,
∵AE⊥CD,AM⊥BC,
∴∠AMC=∠AEN=90°,
∵∠ANE=∠CNM,
∴∠BCD=∠BAM,
∴∠BAM=BAD,
在△ANE与△ADE中,
,
∴△ANE≌△ADE,
∴AD=AN;
(2)∵AE=2,AE⊥CD,
又∵ON=1,
∴设NE=x,则OE=x-1,NE=ED=x,
r=OD=OE+ED=2x-1
连结AO,则AO=OD=2x-1,
∵△AOE是直角三角形,AE=2,OE=x-1,AO=2x-1,
∴(2)2+(x-1)2=(2x-1)2,
解得x=2,
∴r=2x-1=3.
19.(2018·陕西中考模拟)如图,已知△ABC内接于⊙O,AB为⊙O的直径,AC的延长线上有点D,AC=3CD,连接BD,E为BD的中点,CE是⊙O的切线.
(1)求证:BD与⊙O相切;
(2)求∠ACE的度数.
【答案】(1)详见解析;(2)120°
【详解】
(1)连接OC,如图,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵E为BD的中点,
∴CE=BE=DE,
∴∠1=∠2,
∵OB=OC,
∴∠3=∠4,
∵CE是⊙O的切线.
∴OC⊥CE,
∴∠1+∠3=90°,
∴∠2+∠4=90°,即∠OBE=90°,
∴BD⊥AB,
∴BD与⊙O相切;
(2)解:设CD=x,则AC=3x,
∵∠CAB=∠BAD,∠ACB=∠ABD=90°,
∴△ABC∽△ADB,
∴,即,
∴AB=2x,
在Rt△ACB中,∵cosA==,
∴∠A=30°,
∵OA=OC,
∴∠OCA=∠A=30°,
∴∠ACE=30°+90°=120°.
20.(2018·浙江中考真题)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.
(1)求证:△HBE∽△ABC;
(2)若CF=4,BF=5,求AC和EH的长.
【答案】(1)证明见解析;(2)CA=6,EH=2.
【解析】
(1)∵AC是⊙O的切线,
∴CA⊥AB.
∵EH⊥AB,
∴∠EHB=∠CAB.
∵∠EBH=∠CBA,
∴△HBE∽△ABC.
(2)连接AF.
∵AB是直径,
∴∠AFB=90°.
∵∠C=∠C,∠CAB=∠AFC,
∴△CAF∽△CBA,
∴CA2=CF•CB=36,
∴CA=6,AB=,AF=.
∵,
∴∠EAF=∠EAH.
∵EF⊥AF,EH⊥AB,
∴EF=EH.
∵AE=AE,
∴Rt△AEF≌Rt△AEH,
∴AF=AH=2.
设EF=EH=x.在Rt△EHB中,(5﹣x)2=x2+()2,
∴x=2,
∴EH=2.
21.(2019·山东中考模拟)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.
【答案】(1)直线DE与⊙O相切.理由见解析;(2)图中阴影部分的面积为4.8﹣π.
【解析】
(1)直线DE与⊙O相切.理由如下:
连接OE、OD,如图,
∵AC是⊙O的切线,
∴AB⊥AC,
∴∠OAC=90°,
∵点E是AC的中点,O点为AB的中点,
∴OE∥BC,
∴∠1=∠B,∠2=∠3,
∵OB=OD,
∴∠B=∠3,
∴∠1=∠2,
在△AOE和△DOE中
,
∴△AOE≌△DOE,
∴∠ODE=∠OAE=90°,
∴OA⊥AE,
∴DE为⊙O的切线;
(2)∵点E是AC的中点,
∴AE=AC=2.4,
∵∠AOD=2∠B=2×50°=100°,
∴图中阴影部分的面积=2××2×2.4﹣.