2021年中考数学专题复习 专题24 矩形(教师版含解析)
展开专题24 矩形问题
1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
2.矩形的性质
(1)矩形的四个角都是直角;
(2)矩形的对角线平分且相等。
3.矩形判定定理
(1)有一个角是直角的平行四边形是矩形;
(2)对角线相等的平行四边形是矩形;
(3)有三个角是直角的四边形是矩形。
4.矩形的面积:S=ab(a、b分别表示矩形的长、宽)
【例题1】(2020•湘西州)如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于( )
A.acosx+bsinx B.acosx+bcosx
C.asinx+bcosx D.asinx+bsinx
【答案】A
【解析】作CE⊥y轴于E,由矩形的性质得出CD=AB=a,AD=BC=b,∠ADC=90°,证出∠CDE=∠DAO=x,由三角函数定义得出OD=bsinx,DE=acosx,进而得出答案.
作CE⊥y轴于E,如图:
∵四边形ABCD是矩形,
∴CD=AB=a,AD=BC=b,∠ADC=90°,
∴∠CDE+∠ADO=90°,
∵∠AOD=90°,∴∠DAO+∠ADO=90°,
∴∠CDE=∠DAO=x,
∵sin∠DAO=ODAD,cos∠CDE=DECD,
∴OD=AD×sin∠DAO=bsinx,DE=D×cos∠CDE=acosx,
∴OE=DE+OD=acosx+bsinx,
∴点C到x轴的距离等于acosx+bsinx.
【对点练习】(2019•贵州省铜仁市)如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是( )
A.360° B.540° C.630° D.720°
【答案】C.
【解答】一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的
倍数,都能被180整除,分析四个答案,
只有630不能被180整除,所以a+b不可能是630°.
【例题2】(2020•菏泽)如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为 .
【答案】317.
【解析】根据矩形的性质可得BD=13,再根据BP=BA可得DQ=DP=8,所以得CQ=3,在Rt△BCQ中,根据勾股定理即可得BQ的长.
∵矩形ABCD中,AB=5,AD=12,∠BAD=∠BCD=90°,
∴BD=AB2+AD2=13,
∵BP=BA=5,
∴PD=BD﹣BP=8,
∵BA=BP,
∴∠BAP=∠BPA=∠DPQ,
∵AB∥CD,
∴∠BAP=∠DQP,
∴∠DPQ=∠DQP,
∴DQ=DP=8,
∴CQ=DQ﹣CD=DQ﹣AB=8﹣5=3,
∴在Rt△BCQ中,根据勾股定理,得
BQ=BC2+CQ2=153=317.
【对点练习】(2019内蒙古通辽)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为 .
【答案】.
【解答】∵四边形ABCD是矩形
∴AO=CO=BO=DO,
∵AE平分∠BAO
∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,
∴△ABE≌△AOE(ASA)
∴AO=AB,且AO=OB
∴AO=AB=BO=DO,
∴BD=2AB,
∵AD2+AB2=BD2,
∴64+AB2=4AB2,
∴AB=
【例题3】(2020•聊城)如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.
【答案】见解析。
【解析】根据平行四边形的性质得到两角一边对应相等,利用AAS判定△ABE≌△FCE,从而得到AB=CF;由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形.
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠BAE=∠CFE,∠ABE=∠FCE,
∵E为BC的中点,
∴EB=EC,
∴△ABE≌△FCE(AAS),
∴AB=CF.
∵AB∥CF,
∴四边形ABFC是平行四边形,
∵BC=AF,
∴四边形ABFC是矩形.
【对点练习】(2019•湖北省鄂州市)如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.
(1)求证:四边形DEBF是平行四边形;
(2)当DE=DF时,求EF的长.
【答案】见解析。
【解析】根据矩形的性质得到AB∥CD,由平行线的性质得到∠DFO=∠BEO,根据全等三角形的性质得到DF=BE,于是得到四边形BEDF是平行四边形;推出四边形BEDF是菱形,得到DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x根据勾股定理即可得到结论.
(1)证明:∵四边形ABCD是矩形,
∴AB∥CD,
∴∠DFO=∠BEO,
又因为∠DOF=∠BOE,OD=OB,
∴△DOF≌△BOE(ASA),
∴DF=BE,
又因为DF∥BE,
∴四边形BEDF是平行四边形;
(2)解:∵DE=DF,四边形BEDF是平行四边形
∴四边形BEDF是菱形,
∴DE=BE,EF⊥BD,OE=OF,
设AE=x,则DE=BE=8﹣x
在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2
∴x2+62=(8﹣x)2,
解之得:x=,
∴DE=8﹣=,
在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2
∴BD=,
∴OD= BD=5,
在Rt△DOE中,根据勾股定理,有DE2 ﹣OD2=OE2,
∴OE=,
∴EF=2OE=.
一、选择题
1.(2020•怀化)在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为( )
A.4 B.6 C.8 D.10
【答案】C
【解析】根据矩形的性质得到OA=OB=OC=OD,推出S△ADO=S△BCO=S△CDO=S△ABO=2,即可求出矩形ABCD的面积.
∵四边形ABCD是矩形,对角线AC、BD相交于点O,
∴AC=BD,且OA=OB=OC=OD,
∴S△ADO=S△BCO=S△CDO=S△ABO=2,
∴矩形ABCD的面积为4S△ABO=8,
2.(2020•达州)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=2AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是( )
A.4 B.3 C.2 D.1
【答案】A
【解析】由矩形得EB=ED=EA,∠BAD为直角,再由等腰三角形的三线合一性质可判断①的正误;证明△AOF≌△ABD,便可判断②的正误;连接BF,由线段的垂直平分线得BF=DF,由前面的三角形全等得AF=AB,进而便可判断③的正误;由直角三角形斜边上的中线定理得AG=OG,进而求得∠AGE=45°,由矩形性质得ED=EA,进而得∠EAD=22.5°,再得∠EAG=90°,便可判断④的正误.
①∵四边形ABCD是矩形,
∴EB=ED,
∵BO=DO,
∴OE平分∠BOD,
故①正确;
②∵四边形ABCD是矩形,
∴∠OAD=∠BAD=90°,
∴∠ABD+∠ADB=90°,
∵OB=OD,BE=DE,
∴OE⊥BD,
∴∠BOE+∠OBE=90°,
∴∠BOE=∠BDA,
∵∠BOD=45°,∠OAD=90°,
∴∠ADO=45°,
∴AO=AD,
∴△AOF≌△ABD(ASA),
∴OF=BD,
故②正确;
③∵△AOF≌△ABD,
∴AF=AB,
连接BF,如图1,
∴BF=2AF,
∵BE=DE,OE⊥BD,
∴DF=BF,
∴DF=2AF,
故③正确;
④根据题意作出图形,如图2,
∵G是OF的中点,∠OAF=90°,
∴AG=OG,
∴∠AOG=∠OAG,
∵∠AOD=45°,OE平分∠AOD,
∴∠AOG=∠OAG=22.5°,
∴∠FAG=67.5°,∠ADB=∠AOF=22.5°,
∵四边形ABCD是矩形,
∴EA=ED,
∴∠EAD=∠EDA=22.5°,
∴∠EAG=90°,
∵∠AGE=∠AOG+∠OAG=45°,
∴∠AEG=45°,
∴AE=AG,
∴△AEG为等腰直角三角形,
故④正确;
故选:A.
3.(2019•广东广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若
BE=3,AF=5,则AC的长为( )
A.4 B.4 C.10 D.8
【答案】A
【解析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.
连接AE,如图:
∵EF是AC的垂直平分线,
∴OA=OC,AE=CE,
∵四边形ABCD是矩形,
∴∠B=90°,AD∥BC,
∴∠OAF=∠OCE,
在△AOF和△COE中,,
∴△AOF≌△COE(ASA),
∴AF=CE=5,
∴AE=CE=5,BC=BE+CE=3+5=8,
∴AB===4,
∴AC===4;
故选:A.
4.(2019•山东泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是( )
A.2 B.4 C. D.
【答案】D
【解析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.
如图:
当点F与点C重合时,点P在P1处,CP1=DP1,
当点F与点E重合时,点P在P2处,EP2=DP2,
∴P1P2∥CE且P1P2=CE
当点F在EC上除点C、E的位置处时,有DP=FP
由中位线定理可知:P1P∥CE且P1P=CF
∴点P的运动轨迹是线段P1P2,
∴当BP⊥P1P2时,PB取得最小值
∵矩形ABCD中,AB=4,AD=2,E为AB的中点,
∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2
∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°
∴∠DP2P1=90°
∴∠DP1P2=45°
∴∠P2P1B=90°,即BP1⊥P1P2,
∴BP的最小值为BP1的长
在等腰直角BCP1中,CP1=BC=2
∴BP1=2
∴PB的最小值是2
5.(2019湖北荆州)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是( )
A.①② B.①③ C.②③ D.①②③
【答案】C
【解析】∵四边形ABCD为矩形,
∴AE=CE,
而OA=OC,
∴OE为∠AOC的平分线.
二、填空题
6.(2020•绍兴)将两条邻边长分别为2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 (填序号).
①2, ②1, ③2-1, ④32, ⑤3.
【答案】①②③④.
【解析】首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解.
如图所示:
则其中一个等腰三角形的腰长可以是①2,②1,③2-1,④32,不可以是3.
7.(2020•泸州)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为 .
【解析】43.
【分析】延长CE、DA交于Q,延长BF和CD,交于W,根据勾股定理求出BF,根据矩形的性质求出AD,根据全等三角形的性质得出AQ=BC,AB=CW,根据相似三角形的判定得出△QMF∽△CMB,△BNE∽△WND,根据相似三角形的性质得出比例式,求出BN和BM的长,即可得出答案.
【解析】延长CE、DA交于Q,如图1,
∵四边形ABCD是矩形,BC=6,
∴∠BAD=90°,AD=BC=6,AD∥BC,
∵F为AD中点,
∴AF=DF=3,
在Rt△BAF中,由勾股定理得:BF=AB2+AF2=42+32=5,
∵AD∥BC,
∴∠Q=∠ECB,
∵E为AB的中点,AB=4,
∴AE=BE=2,
在△QAE和△CBE中
∠QEA=∠BEC∠Q=∠ECBAE=BE
∴△QAE≌△CBE(AAS),
∴AQ=BC=6,
即QF=6+3=9,
∵AD∥BC,
∴△QMF∽△CMB,
∴FMBM=QFBC=96,
∵BF=5,
∴BM=2,FM=3,
延长BF和CD,交于W,如图2,
同理AB=DM=4,CW=8,BF=FM=5,
∵AB∥CD,
∴△BNE∽△WND,
∴BNNF=BEDW,
∴BN5-BN+5=24,
解得:BN=103,
∴MN=BN﹣BM=103-2=43
8.(2020•黔东南州)如图,矩形ABCD中,AB=2,BC=2,E为CD的中点,连接AE、BD交于点P,过点P作PQ⊥BC于点Q,则PQ= .
【解析】43.
【分析】根据矩形的性质得到AB∥CD,AB=CD,AD=BC,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB,根据相似三角形的性质即可得到结论.
【解析】∵四边形ABCD是矩形,
∴AB∥CD,AB=CD,AD=BC,∠BAD=90°,
∵E为CD的中点,
∴DE=12CD=12AB,
∴△ABP∽△EDP,
∴ABDE=PBPD,
∴21=PBPD,
∴PBBD=23,
∵PQ⊥BC,
∴PQ∥CD,
∴△BPQ∽△DBC,
∴PQCD=BPBD=23,
∵CD=2,
∴PQ=43
9.(2019湖南娄底)如图,要使平行四边形 ABCD 是矩形,则应添加的条件是 (添加一个条件即可).
【答案】∠ABC=90°或 AC=BD.
【解析】根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形;故添加条件:∠ABC=90°或 AC=BD.
故答案为:∠ABC=90°或 AC=BD.
10.(2019黑龙江省龙东地区)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△PAB= S△PCD,则PC+PD的最小值是________.
【答案】.
【解析】结合已知条件,根据S△PAB= S△PCD可判断出点P在平行于AB,与AB的距离为2、与CD的距离为4的直线上,再根据“将军饮马问题”的解法解之即可.
过点P作直线l∥AB,作点D关于直线l的对称点D1,连接CD1,∵矩形ABCD中,AB=4,BC=6,∴CD=4,DD1=8,
在Rt△CDD1中,由勾股定理得CD1=,∴PC+PD的最小值是.
11.(2019贵州省安顺市) 如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点D为斜边BC上的一个动点,过D分别作DM⊥AB于点M,作DN⊥AC于点N,连接MN,则线段MN的最小值为 .
B
D
M
N
C
A
【答案】
【解析】连接AD,即可证明四边形AMDN是矩形;由矩形AMDN得出MN=AD,再由三角形的面积关系求出AD的最小值,即可得出结果.
连接AD,如图所示:
B
D
M
N
C
A
∵DM⊥AB,DN⊥AC,∴∠AMD=∠AND=90°,
又∵∠BAC=90°,∴四边形AMDN是矩形;∴MN=AD,
∵∠BAC=90°,AB=3,AC=4,∴BC=5,
当AD⊥BC时,AD最短,
此时△ABC的面积=BC•AD=AB•AC,
∴AD的最小值=,
∴线段MN的最小值为。
12.(2019•湖北省咸宁市)如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:
①CQ=CD;
②四边形CMPN是菱形;
③P,A重合时,MN=2;
④△PQM的面积S的取值范围是3≤S≤5.
其中正确的是 (把正确结论的序号都填上).
【答案】②③.
【解析】先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CN=NP,然后根据邻边相等的平行四边形是菱形证明,判断出②正确;假设CQ=CD,得Rt△CMQ≌△CMD,进而得∠DCM=∠QCM=∠BCP=30°,这个不一定成立,判断①错误;点P与点A重合时,设BN=x,表示出AN=NC=8﹣x,利用勾股定理列出方程求解得x的值,进而用勾股定理求得MN,判断出③正确;当MN过D点时,求得四边形CMPN的最小面积,进而得S的最小值,当P与A重合时,S的值最大,求得最大值便可.
如图1,
∵PM∥CN,
∴∠PMN=∠MNC,
∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,
∵NC=NP,∴PM=CN,
∵MP∥CN,
∴四边形CNPM是平行四边形,
∵CN=NP,∴四边形CNPM是菱形,故②正确;
∴CP⊥MN,∠BCP=∠MCP,
∴∠MQC=∠D=90°,
∵CP=CP,
若CQ=CD,则Rt△CMQ≌△CMD,
∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,
故①错误;
点P与点A重合时,如图2,
设BN=x,则AN=NC=8﹣x,
在Rt△ABN中,AB2+BN2=AN2,
即42+x2=(8﹣x)2,
解得x=3,
∴CN=8﹣3=5,AC=,
∴,
∴,
∴MN=2QN=2.
故③正确;
当MN过点D时,如图3,
此时,CN最短,四边形CMPN的面积最小,则S最小为S=,
当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=,
∴4≤S≤5,故④错误.故答案为:②③.
13.(2019·贵州贵阳)如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是 .
【答案】.
【解析】E的运动路径是EE'的长;
∵AB=4,∠DCA=30°,
∴BC=,
当F与A点重合时,
在Rt△ADE'中,AD=,∠DAE'=30°,∠ADE'=60°,
∴DE'=,∠CDE'=30°,
当F与C重合时,∠EDC=60°,
∴∠EDE'=90°,∠DEE'=30°,
在Rt△DEE'中,EE'=.
14.(2019•山东潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB= .
【答案】.
【解析】利用矩形的性质,证明∠ADE=∠A'DE=∠A'DC=30°,∠C=∠A'B'D=90°,推出△DB'A'≌△DCA',CD=B'D,设AB=DC=x,在Rt△ADE中,通过勾股定理可求出AB的长度.
∵四边形ABCD为矩形,
∴∠ADC=∠C=∠B=90°,AB=DC,
由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,
∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,
∴∠AED=∠A'ED=∠A'EB=×180°=60°,
∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,
∴∠ADE=∠A'DE=∠A'DC=30°,
又∵∠C=∠A'B'D=90°,DA'=DA',
∴△DB'A'≌△DCA'(AAS),
∴DC=DB',
在Rt△AED中,
∠ADE=30°,AD=2,
∴AE==,
设AB=DC=x,则BE=B'E=x﹣
∵AE2+AD2=DE2,
∴()2+22=(x+x﹣)2,
解得,x1=(负值舍去),x2=
15.(2019北京市)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合).对于任意矩形ABCD,下面四个结论中,
①存在无数个四边形MNPQ是平行四边形;
②存在无数个四边形MNPQ是矩形;
③存在无数个四边形MNPQ是菱形;
④至少存在一个四边形MNPQ是正方形.
所有正确结论的序号是_______.
【答案】①②③
【解析】如图,O为矩形ABCD对角线的交点,
①图中任过点O的两条线段PM,QN,则四边形MNPQ是平行四边形;显然有无数个.本结论正确.
②图中任过点O的两条相等的线段PM,QN,则四边形MNPQ是矩形;显然有无数个.本结论正确.
③图中任过点O的两条垂直的线段PM,QN,则四边形MNPQ是菱形;显然有无数个.本结论正确.
④图中过点O的两条相等且垂直的线段PM,QN,则四边形MNPQ是正方形;显然有一个.本结论错误.
故填:①② ③.
三、解答题
16.(2020•苏州)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.
(1)求证:△ABE∽△DFA;
(2)若AB=6,BC=4,求DF的长.
【解析】见解析。
【分析】(1)由矩形性质得AD∥BC,进而由平行线的性质得∠AEB=∠DAF,再根据两角对应相等的两个三角形相似;
(2)由E是BC的中点,求得BE,再由勾股定理求得AE,再由相似三角形的比例线段求得DF.
【解析】(1)∵四边形ABCD是矩形,
∴AD∥BC,∠B=90°,
∴∠DAF=∠AEB,
∵DF⊥AE,
∴∠AFD=∠B=90°,
∴△ADF∽△EAB,
∴△ABE∽△DFA;
(2)∵E是BC的中点,BC=4,
∴BE=2,
∵AB=6,
∴AE=AB2+BE2=62+22=210,
∵四边形ABCD是矩形,
∴AD=BC=4,
∵△ABE∽△DFA,
∴ABDF=AEAD,
∴DF=AB⋅ADAE=6×4210=6510.
17.(2020•贵阳)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.
(1)求证:四边形AEFD是平行四边形;
(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.
【解析】见解析。
【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;
(2)连接DE,如图,先利用勾股定理计算出AE=25,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.
【解答】(1)证明:∵∠四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∵BE=CF,
∴BE+EC=EC+EF,即BC=EF,
∴AD=EF,
∴四边形AEFD是平行四边形;
(2)解:连接DE,如图,
∵四边形ABCD是矩形,
∴∠B=90°,
在Rt△ABE中,AE=42+22=25,
∵AD∥BC,
∴∠AEB=∠EAD,
∵∠B=∠AED=90°,
∴△ABE∽△DEA,
∴AE:AD=BE:AE,
∴AD=25×252=10,
∴四边形AEFD的面积=AB×AD=2×10=20.
18.(2020•遂宁)如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:△BDE≌△FAE;
(2)求证:四边形ADCF为矩形.
【答案】见解析。
【解析】(1)根据平行线的性质得到∠AFE=∠DBE,根据线段中点的定义得到AE=DE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AF=BD,推出四边形ADCF是平行四边形,根据等腰三角形的性质得到∠ADC=90°,于是得到结论.
证明:(1)∵AF∥BC,
∴∠AFE=∠DBE,
∵E是线段AD的中点,
∴AE=DE,
∵∠AEF=∠DEB,
∴△BDE≌△FAE(AAS);
(2)∵△BDE≌△FAE,
∴AF=BD,
∵D是线段BC的中点,∴BD=CD,∴AF=CD,
∵AF∥CD,
∴四边形ADCF是平行四边形,
∵AB=AC,
∴AD⊥BC,∴∠ADC=90°,
∴四边形ADCF为矩形.
19.(2019湖南怀化)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.
(1)求证:△ABE≌△CDF;
(2)求证:四边形AECF是矩形.
【答案】(1)见解析;(2)见解析.
【解析】(1)证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,AB=CD,AD∥BC,
∵AE⊥BC,CF⊥AD,
∴∠AEB=∠AEC=∠CFD=∠AFC=90°,
在△ABE和△CDF中,,
∴△ABE≌△CDF(AAS);
(2)证明:∵AD∥BC,
∴∠EAF=∠AEB=90°,
∴∠EAF=∠AEC=∠AFC=90°,
∴四边形AECF是矩形.
2021年中考数学专题复习 专题52 中考数学最值问题(教师版含解析): 这是一份2021年中考数学专题复习 专题52 中考数学最值问题(教师版含解析),共40页。教案主要包含了解决几何最值问题的要领,解决代数最值问题的方法要领等内容,欢迎下载使用。
2021年中考数学专题复习 专题55 新冠疫情中的中考数学(教师版含解析): 这是一份2021年中考数学专题复习 专题55 新冠疫情中的中考数学(教师版含解析),共14页。教案主要包含了不等式,选择题,填空题,解答题等内容,欢迎下载使用。
2021年中考数学专题复习 专题46 中考数学分类讨论思想(教师版含解析): 这是一份2021年中考数学专题复习 专题46 中考数学分类讨论思想(教师版含解析),共29页。教案主要包含了对点练习等内容,欢迎下载使用。