【精品讲义】人教版 七年级下册寒假同步课程(培优版)1相交线.教师版
展开
内容 | 基本要求 | 略高要求 | 较高要求 |
相交线 平行线 | 了解余角、补角、对顶角,知道等角(同角)的余角相等,等角(同角)的补角相同;了解垂线、垂线段的概念,了解垂线段最短的性质,了解点到直线的距离的意义;了解线段垂直平分线及其性质; | 会用三角尺和直尺过直线外一点做这条直线的平行线;会用直尺或量角器过一点做已知直线的垂线;会用线段垂直平分线的性质解决简单问题; |
|
知识点
1.相交直线的概念及性质
如果直线与直线只有一个公共点,则称直线与直线相交,为交点,其中一条是另一条的相交线.
相交线的性质:两直线相交只有一个交点.
2.邻补角的概念:
两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做互为邻补角.
如图中,和,和,和,和互为邻补角.
互为邻补角的两个角一定互补,但两个角互补不一定是互为邻补角。
3.对顶角的概念及性质:
(1)对顶角的概念:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角. 我们也可以说,两条直线相交成四个角,其中有公共顶点而没有公共边的两个角叫做对顶角.如图中,和,和是对顶角.
(2)对顶角的性质:对顶角相等。
4.垂线的概念及性质:
(1)垂线的概念:垂直是相交的一种特殊情况,两条直线互相垂直,其中一条叫另一条直线的垂线,它们的交点叫垂足.
如图所示,可以记作“于”
(2)垂线的性质:
①过直线外一点有且只有一条直线与已知直线垂直;
②连接直线外一点与直线上各点的所有线段中,垂线段最短,简单说成:垂线段最短.
5.同位角、内错角、同旁内角的概念:
①同位角:两条直线被第三条直线所截,位置相同的一对角(两个角分别在两条直线的相同一侧,并且在第三条直线的同旁)叫做同位角如图所示,∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8都是同位角.
②内错角:两条直线被第三条直线所截,两个角都在两条直线之间,并且位置交错,(即分别在第三条直线的两旁),这样的一对角 叫做内错角,如图中,∠3与∠5,∠4与∠6都是内错角
③同旁内角:两条直线被第三条直线所截,两个角都在两条直线之间,并且在第三条直线的同旁,这样的一对角叫做同旁内角,如图中,∠3与∠6,∠4与∠5都是同旁内角.
看图识角:
(1)“”型中的同位角.如图.
(2)“”字型中的内错角,如图.
(3)“U”字型中的同旁内角.如图.
一、对顶角与邻补角
【例1】 判断正误:
(1)三条直线两两相交有三个交点( )
(2)两条直线相交不可能有两个交点.( )
(3)在同一平面内的三条直线的交点个数可能为,,,.( )
(4)同一平面内的条直线两两相交,其中无三线共点,则可得个交点.( )
(5)同一平面内的条直线经过同一点可得个角(平角除外).( )
【解析】(1).因为“两两相交”包含三条直线交于一点的情况.
(2)√.假设两条直线有两个交点,这说明经过两点的直线有两条,这与“经过两点有且只有
一条直线”相矛盾,所以两条直线相交只能有一个交点,不可能有两个.
(3)√.因为如下图三直线的位置关系如下:
(4)√.(5)√.
【答案】(1);(2)√;(3)√;(4)√;(5)√.
【例2】 平面内两两相交的条直线,其交点个数最少为几个?最多为几个?
【解析】很容易得到最少的交点个数是个;对于最多的情况,不妨从简单情况入手,画图探索规律,
从中发现规律,平面内条直线两两相交最多有:个交点,那么平面内两两相交的6条直线最多有15个交点.
条直线最多可将平面分成几部分?
仍可以从简单情况入手,画图探索规律,(图可用上图):
1条直线最多可将平面分成2部分;1条直线最多可将平面分成4部分;
1条直线最多可将平面分成7部分;1条直线最多可将平面分成10部分;……
发现规律,条直线最多可将平面分成:部分.
【答案】最少有1个,最多有15个交点
【例3】 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是( )
A、20° B、40°
C、50° D、80°
【解析】利用角平分线的性质和对顶角相等即可求得.
【答案】因为∠EOC=100°,OA平分∠EOC,所以∠BOD=∠AOC=×100°=50度.故选C.
【点评】本题考查了角平分线和对顶角的性质,在相交线中角的度数的求解方法.
【例4】 以下说法正确的是( )
A、有公共顶点,并且相等的两个角是对顶角 B、两条直线相交,任意两个角都是对顶角
C、两角的两边互为反向延长线的两个角是对顶角 D、两角的两边分别在同一直线上,这两个角互为对顶角
【解析】两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.两条直线相交,构成的四个角中相邻的角,有公共顶点,两角的两边分别在同一直线上,如果这两条直线互相垂直时,相邻的角还相等,但这样的角不是对顶角.
【答案】A、有公共顶点,并且相等的两个角是对顶角,不符合对顶角的定义,错误;
B、两条直线相交,只有两边互为反向延长线的两个角是对顶角,任意两个角都是对顶角的说法错误;
C、两角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确;
D、两角的两边分别在同一直线上,这两个角是对顶角或者邻补角,错误.
故选C.
【点评】本题考查对顶角的概念,一定要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点.反向延长线等.
【例5】 下列图形中,∠1与∠2不是对顶角的有( )
A、1个 B、2个
C、3个 D、0个
【解析】根据对顶角的定义进行判断,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
【答案】根据对顶角的定义可知:图中只有第二个是对顶角,其它都不是.故选C
【点评】本题考查对顶角的概念,一定要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点,反向延长线等.
【例6】 若∠AOB和∠BOC互为邻补角,且∠AOB比∠BOC大18°,则∠AOB的度数是( )
A、54° B、81°
C、99° D、162°
【解析】设∠AOB=x,则∠BOC=180°﹣x,根据题意∠AOB比∠BOC大18°可求出∠AOB的度数.
【答案】设∠AOB=x°,则∠BOC=180°﹣x°,又∠AOB比∠BOC大18°,∴∠AOB﹣∠BOC=18°,
即x°﹣(180°﹣x°)=18°,解得:x=99°.故选C.
【点评】本题考查邻补角的知识,比较简单,注意在解答时要细心.
【例7】 如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.
【解析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.
【答案】∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.
∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.
【点评】本题主要考查邻补角的概念以及角平分线的定义.
【例8】 如图,直线AB、CD相交于O,OE平分∠AOC,∠BOC﹣∠BOD=20°,求∠BOE的度数.
【解析】根据邻补角的定义和性质,结合已知∠BOC﹣∠BOD=20°,可求∠BOC、∠BOD的度数,利用对顶角相等,得∠AOC的度数,利用角平分线的定义,可求∠EOC的度数,从而求出∠BOE.
【答案】∵∠BOC﹣∠BOD=20°且∠BOC+∠BOD=180°,∴∠BOC=100°,∠AOC=80°,∵OE平分∠AOC,
∴∠EOC=∠AOC=40°,∴∠BOE=∠BOC+∠EOC=140°.
【点评】本题考查邻补角的定义和对顶角的性质以及角平分线的定义,是一个需要熟记的内容.
【例9】 当光线射入水中,光线的传播方向发生改变,这就是折射现象.如图所示,插入水中的筷子变弯了,就是一种折射现象,图中的∠1和∠2是对顶角吗?比较∠1与∠2的大小关系并说明理由.
【解析】两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.两条直线相交,构成两对对顶角.互为对顶角的两个角相等(对顶角的性质).对顶角是针对具有特殊位置的两个角的名称;对顶角相等反映的是两个角之间的大小关系.
【答案】∠1和∠2不是对顶角,因为不是两条直线相交形成的角,∠1>∠2,因为可延长入射光线即得到∠1的对顶角∠3而∠2在∠3的内部,故∠3>∠2,即∠1>∠2.
【点评】本题考查对顶角的定义及性质,注意对顶角的定义中的关键词,如:一个公共顶点,反向延长线等.
【例10】 直线AB,CD相交于点O,∠BOC=40°.
(1)写出∠BOC的邻补角;(2)求∠AOC,∠AOD,∠BOD度数.
【解析】(1)根据邻补角的概念可求∠BOC的邻补角是∠BOD与∠AOC;
(2)根据对顶角的性质可求∠AOC,根据邻补角的概念可求∠AOC,再利用对顶角的性质可求
∠BOD.
【答案】(1)∠BOC的邻补角是∠BOD与∠AOC.
(2)∵∠BOC=40°,∴∠AOD=∠BOC=40°,∵∠BOC+∠AOC=180°,
∴∠AOC=180°﹣∠BOC=180°﹣40°=140°,∴∠BOD=∠AOC=140°,∴∠AOC、∠AOD、∠BOD的度数分别为140°、40°、140°.
【点评】本题考查了邻补角、对顶角,解题的关键是理解邻补角、对顶角的概念,并会运用其性质.
【例11】 小明同学认为对顶角可以这样定义:顶点公共,而且相等的角叫对顶角,你认为正确吗?如果你认为不正确请举一个反例,并对“对顶角”正确定义.
【解析】不正确,可以通过作图举出反例,然后给出一个正确的定义即可.
【答案】不正确,如图,∠AOB=∠COD,且其有公共的顶点O,但不是对顶角.
对顶角的定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫对顶角.
【点评】此题主要考查学生对对顶角定义的理解.
二、垂直于垂线
【例12】 下列说法中正确的是( )
①点到直线的距离是点到直线所作的垂线;
②两个角相等,这两个角是对顶角;
③两个对顶角互补,则构成这两个角的两条直线互相垂直;
④连接直线外一点到直线上所有点的线段中垂线段最短.
A.①② B. ②③ C.③④ D.②④
【解析】略
【答案】C
【例13】 如图,已知.,垂足为,则点到直线的距离为线段 的长;线段的长为点 到直线 的距离.
【解析】,,
初学的同学做此题很容易做错,有一种线段太多不易判断的感觉,实际上在看图时,只要把一相关的线暂时隐藏,问题就可以解决.例如:观察点到直线的距离时,眼中只有点与,然后自己画出其垂线段,再看所画线段与谁重合.
【答案】,,
【例14】 如图,直线与相交于,,,,求和的度数.
【解析】∴(垂直定义).
∴(对顶角相等).
∵,∴(垂直定义).
本题综合运用了两角互余、对顶角相等等性质.由已知条件和观察图形,可知与互余,与互余,和的对顶角,利用这些关系可解此题.
【答案】;
【例15】 如图,在直角三有形中,,于,比较线段、、的大小.
【解析】由可知,,故(垂线段最短)又,故(垂线段最短)故.
【答案】
【例16】 如图,点处是一座小屋,是一条公路,一人在处,
①此人到小屋去,怎么走最近?理由是什么?②此人要到公路,怎么走最近?理由是什么?
【解析】 ①走线段,因为两点之间线段最短;②如图,过点作,垂足为,走线段,因为垂线段最短.
【答案】如图
【例17】 如图,某自来水厂计划把河流中的水引到蓄水池中,问从河岸的何处开渠,才能使所开的渠道最短?画图表示,并说明设计的理由。
【解析】答案如图。点与直线上各点的所有线段中,垂线段最短
【答案】如图
【例18】 如下图所示,在一个面积为平方米的正方形货场中有一条长为米的直线铁路.现有一辆装满货物的卡车停放在点,如果卡车的速度是每分钟米,请说明11分钟内能否将这车货物运到铁路线旁?
【解析】略
【答案】因为卡车的速度是固定不变的.卡车11分钟内能否将货物运到铁路线旁,关键是能否在铁路线上找到一点,使这点到点的距离不大于11分钟卡车所行驶的路程.由“直线外一点与直线上各点连结的所有线段中,垂线段最短”,想到过点作的垂线,然后再比较垂线段的长度与卡车11分钟能行驶的路程的大小,得出结论.
如图所示,汽车由点到直线铁路段的最短距离是由向引的垂线.连结.
又
∴
∴(米)
卡车行1152米,需要 (分钟)> 11(分钟).
∴在11分钟内不能将这车货物由点运到铁路线旁.
三、三线八角
【例19】 如图,填空:
①与是两条直线 与 被第三条直线 所截构成的 角.
②与是两条直线 与 被第三条直线 所截构成的 角.
③与是两条直线 与 被第三条直线 所截构成的 角.
④与是两条直线 与 被第三条直线 所截构成的 角.
⑤与是两条直线 与 被第三条直线 所截构成的 角.
【解析】略.
【答案】①与是两条直线与被第三条直线所截构成的同位角.
②与是两条直线与被第三条直线所截构成的同位角.
③与是两条直线与被第三条直线所截构成的内错角.
④与是两条直线与被第三条直线所截构成的内错角.
⑤与是两条直线与被第三条直线所截构成的同旁内角.
【例20】 如图,找出图中用数字标出的角中的同位角、内错角和同旁内角.
【解析】略.
【答案】同位角有:与、与、与;
内错角有:与、与、与、与;
同旁内角有:与、与、与、与.
【例21】 用数码标出图中与是同位角的所有角.
【解析】的两条边所在的直线是,,若把看成是第三条直线,则有:
1)截直线及,得的同位角为;
2)截直线及,得的同位角为;
3)截直线及,得的同位角为;
若把看成第三条直线,则有
4)截直线,及,得的同位角为;
5)截直线及,得的同位角为;
6)截直线及得的同位角为.
【解析】的同位角有,,,,,.
【例22】 下列图中∠1和∠2是同位角的是( )
A.⑴、⑵、⑶ B.⑵、⑶、⑷
C.⑶、⑷、⑸ D.⑴、⑵、⑸
【解析】D判断什么是同位角,图(1)、(2)、(5)中的∠1和∠2是同位角
【答案】D
【例23】 如图,判断下列各对角的位置关系:⑴∠1与∠4;⑵∠2与∠6;⑶∠5与∠8;⑷∠4与;⑸∠3与∠5.
【解析】略
【答案】∠1与∠4是同位角,∠2与∠6是内错角,∠5与∠8是对顶角,∠4与∠BCD是同旁内角,∠3与∠5是内错角.
【例24】 找出下图中用数字表示的各角中,哪些是同位角,内错角?哪些是同旁内角?
【解析】略
【答案】图中,与是直线、被直线所截形成的同位角;与是直线、被直线
【例25】 找出下图中用数字表示的各角中,哪些是同位角,内错角?哪些是同旁内角?
【解析】略
【答案】图中,与是直线、被直线所截形成的内错角;
【例26】 找出下图中用数字表示的各角中,哪些是同位角,内错角?哪些是同旁内角?
【解析】略
【答案】图中,与是直线、被直线所截形成的同位角.
【例27】 如下图,图中与∠1 成同位角的个数是( )
A.2 B.3 C.4 D.5
【解析】略
【答案】B
【例28】 下图有 对内错角.
【解析】.做此类型题:第一、要找三种关系角(同位角、内错角、同旁内角)关键在于寻找线段;第二、不同的线段找出来的三种关系角是不会重复;第三、在线段很多的时候,要找出相同特点的线段的条数,只需算出一条线段的关系角的对数,故该特点的线段的关系角为.在本题中,线段、、,每条线段都有对内错角;线段、、,每条线段都只有对内错角;线段、、,每条线段都只有对内错角;线段、、,每条线段都有对内错角;故总的内错角为:.
【答案】24
【例29】 若平面上有条直线两两相交且无三线共点,则共有同旁内角 对.
【解析】每条直线都与另条直线相交,有个交点 ,每两个交点决定一条线段,共有条线段,而每条线段两侧各有一对同旁内角,共有条线段,总共有对同旁内角.
【答案】24
- 如图,当光线从空气射入水中,光线的传播发生了改变,这就是折射现象.∠1的对顶角是( )
A、∠AOB B、∠BOC
C、∠AOC D、都不是
【解析】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
【答案】根据对顶角的定义判断:∠1的对顶角为∠AOB,故选A.
【点评】要根据对顶角的定义来判断,是简单的基础题.
- 为直线外一点,点为上的三点,且,那么下列说法错误的是( )
A.、、三条线段中,PB最短
B.线段叫做点到直线的的距离
C.是点到的垂线段
D.线段的长是点到的距离
【解析】结合图象,A、B、C是正确的,只有D是错误的
【答案】D
- 如下图,平行直线、与相交直线、相交,图中的同旁内角共有 对.
【解析】图中有条线段,所以有对同旁内角.
【答案】.
- 找出图中所有的同位角、内错角和同旁内角,并指出它们分别是哪两条直线被哪一条直线所截形成的.
【解析】略
【答案】与是直线、被直线所截形成的同位角;
与是直线、被直线所截形成的内错角;
与是直线、被直线所截形成的同旁内角;
与是直线、被直线所截形成的同旁内角;
【精品讲义】人教版 七年级下册寒假同步课程(培优版)1相交线.学生版: 这是一份【精品讲义】人教版 七年级下册寒假同步课程(培优版)1相交线.学生版,共10页。
【精品讲义】人教版 七年级下册寒假同步课程(培优版)12数据收集、整理、描述..教师版: 这是一份【精品讲义】人教版 七年级下册寒假同步课程(培优版)12数据收集、整理、描述..教师版,共16页。教案主要包含了数据的收集等内容,欢迎下载使用。
【精品讲义】人教版 七年级下册寒假同步课程(培优版)11不等式及不等式组的应用.教师版: 这是一份【精品讲义】人教版 七年级下册寒假同步课程(培优版)11不等式及不等式组的应用.教师版,共10页。