初中数学北师大版九年级下册5 二次函数与一元二次方程一等奖教案设计
展开
这是一份初中数学北师大版九年级下册5 二次函数与一元二次方程一等奖教案设计,共4页。教案主要包含了教学目标,教学过程等内容,欢迎下载使用。
一、教学目标
知识与技能
1.巩固理解二次函数图象与x轴交点的横坐标就是方程ax2+bx+c=0的根;
2.巩固理解一元二次方程ax2+bx+c=h的根就是二次函数y=ax2+bx+c 与直线y=h(h是实数)图象交点的横坐标.
过程与方法
1.经历一元二次方程ax2+bx+c=0的根的近似值的探索得到的过程;
2.经历一元二次方程ax2+bx+c=h的根的近似值的探索得到的过程。
情感态度与价值观
1.通过对一元二次方程根的近似值探索过程,进一步体会二次函数与方程之间的联系.
三、教学过程
-1
1
-1
第一环节 课前热身、耐心填一填
活动内容:
1. 抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点纵坐标是3,求这条抛物线的表达式___________________ .
2.若a>0,b>0,c>0,△>0,那么抛物线y=ax2+bx+c经过象限.
3. 在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的关系满足y=-x2+10x.(1)经过_____时间,炮弹达到它的最高点?最高点的高度是_____?(2)经过_____秒,炮弹落在地上爆炸?
4.一元二次方程ax2+bx+c=0的根就是二次函数y=ax2+bx+c的图象抛物线与直线________交点的________坐标。
5.一元二次方程ax2+bx+c=h的根就是二次函数y=ax2+bx+c的图象抛物线与直线_________交点的_________坐标 .
第二环节 用心想一想,马到功成
活动内容:
你能利用二次函数的图象估计一元二次方程x2+2x-10=0的根吗?
分析解答:
(1) 用描点法作二次函数y=x2+2x-10的图象
(2) 观察估计二次函数y=x2+2x-10的图象与
x轴的交点的横坐标;
由图象可知:图象与x轴有两个交点,其横坐标一个在-5与-4之间,另一个在2与3之间,分别约为-4.3和2.3.
(3) 确定方程x2+2x-10=0的解;
由此可知,方程x2+2x-10=0的近似根为:
x1≈-4.3,x2≈2.3
第三环节 教材题变形,拓展延伸
活动内容:
利用二次函数的图象求一元二次方程x2+2x-10=3的近似根.分析解答:
用描点法作二次函数y=x2+2x-10的图象
(2) 作直线y=3;
(3) 观察估计抛物线y=x2+2x-10和直线y=3的交点的横坐标;
由图象可知,它们有两个交点,其横坐标一个在-5与-4之间,
另一个在2与3之间,分别约为-4.7和2.7.
(4) 确定方程x2+2x-10=3的解;
由此可知,方程x2+2x-10=3的近似根为:
x1≈-4.7,x2≈2.7
附创新解法2:
(1) 原方程可变形为x2+2x-13=0;
(2) 用描点法作二次函数y=x2+2x-13的图象
(3) 观察估计抛物线y=x2+2x-13和x轴的交点的横坐标;
由图象可知,它们有两个交点,其横坐标一个在-5与-4之
间,另一个在2与3之间,分别约为-4.7和2.7。
(4) 确定方程x2+2x-10=3的解;
由此可知,方程x2+2x-10=3的近似根为:
x1≈-4.7 ,x2≈2.7
第四环节 大胆尝试、练一练
活动内容:
利用二次函数的图象求一元二次方程-2x2+4x+1=0的近似根
分析解答:
1)用描点法作二次函数y=-2x2+4x+1的图象;
2)观察估计二次函数y=-2x2+4x+1的图象与x轴的交点的横坐标;由图象可知,图象与x轴有
两个交点,其横坐标一个在-1与0之间,另一个
在2与3之间,分别约为-0.2和2.2
(3) 确定方程x2+4x+1=0的解;
由此可知,方程x2+4x+1=0的近似根为:
x1≈-0.2, x2≈2.2
第六环节 归纳小节、说一说
学生畅所欲言自己的切身感受与实际收获,他们普遍认同了函数问题研究时,应该用数形结合思想从两方面来考虑问题,说明数形结合思想在他们的数学思维中逐渐形成 。但他们也表示有的时候从“数”的一面研究比较方便,有时从“形”的一面研究问题会更简洁些。
布置作业
P57页习题2.11
相关教案
这是一份北师大版九年级下册5 二次函数与一元二次方程教学设计,共4页。教案主要包含了教学内容,教学目标,教学重点,教学方法,教学过程等内容,欢迎下载使用。
这是一份北师大版九年级下册5 二次函数与一元二次方程教案,共3页。教案主要包含了教学目标,教学重难点,教学过程,教学反思等内容,欢迎下载使用。
这是一份初中数学北师大版九年级下册第二章 二次函数5 二次函数与一元二次方程精品教学设计及反思,共20页。教案主要包含了教师准备,学生准备,师生活动,学生活动,教师点评,基础巩固,能力提升,拓展探究等内容,欢迎下载使用。