初中数学北师大版九年级下册第二章 二次函数3 确定二次函数的表达式优秀教案设计
展开一、教学目标
知识与技能
1.通过运用解析式、列表、画图象三种方法表示二次函数,比较这三种方法表示二次函数的优缺点,从而为解决函数类实际问题打下坚实的基础。
2.通过学生实际解题过程,达到灵活掌握用解析式、列表、画图这三种方法表示二次函数。
3.能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究。
过程与方法
1.能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。
2.让学生在学习活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和归纳总结的能力。
情感态度与价值观
在学习过程中体会学以致用,提高运用所学知识解决实际问题的能力。
教学重点:三种方法表示二次函数的优缺点;为解决函数类实际问题打下坚实的基础
教学难点:三种方法表示二次函数的优缺点;为解决函数类实际问题打下坚实的基础
三、教学过程分析
第一环节 解决问题
活动内容:
1.问题一:已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2. y随x的而变化的规律是什么?你能分别用函数表达式,表格和图象表示出来吗?
2.当学生完成上述的三个任务之后,进一步帮助学生明晰以下问题:
(1)在上述问题中,自变量x的取值范围是什么?
(2)当x取何值时,长方形的面积最大?它的最大面积是多少?
(3)请你描述一下y随x的变化而变化的情况.
3.问题二:两个数相差2,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的?
(1)你能分别用函数表达式,表格和图象表示这种变化吗?
(2)自变量x的取值范围是什么?
(3)图象的对称轴和顶点坐标分别是什么?
(4)如何描述y随x的变化而变化的情况?
(5)你是分别通过哪种表示方式回答上面三个问题的?
第二环节 课堂小结
活动内容:
1.二次函数的三种表示方式各有什么特点?它们之间有什么联系? 与同伴进行交流.
2.对本节知识进行巩固,原则上由学生复述内容及要点。
第三环节 布置作业
P43习题2.6第
小组合作讨论更具实效性。
2.4二次函数的应用1
一、教学目标
(一)知识与技能
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.
(二)过程与方法
1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.
2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.
(三)情感态度与价值观
1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.
2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.
3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.
教学重点
1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.
2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.
教学难点
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积的问题.
三、教学过程分析
第一环节 创设问题情境,引入新课
上节课我们利用二次函数解决了最大利润问题,知道了求最大利润就是求二次函数的最大值,实际上就是利用二次函数来解决实际问题.解决这类问题的关键是要审清题意,明确要解决的是什么,分析问题中各个量之间的关系,建立数学模型。在此基础上,利用我们所学过的数学知识,逐步得到问题的解答过程.
本节课我们将继续利用二次函数解决最大面积的问题.
活动内容:由四个实际问题构成
1.问题一:如下图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上.
(1)设长方形的一边AB=x m,那么AD边的长度如何表示?
(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?
下面请小组开始讨论并写出解题步骤.
(1)∵BC∥AD,
∴△EBC∽△EAF.∴.
又AB=x,BE=40-x,
∴.∴BC=(40-x).
∴AD=BC=(40-x)=30-x.
(2)y=AB·AD=x(30-x)=-x2+30x
=-(x2-40x+400-400)
=-(x2-40x+400)+300
=-(x-20)2+300.
当x=20时,y最大=300.
即当x取20m时,y的值最大,最大值是300m2.
2.问题二:将问题一变式:“设AD边的长为x m,则问题会怎样呢?”
解:∵DC∥AB,
∴△FDC∽△FAE.
∴.
∵AD=x,FD=30-x.
∴.
∴DC=(30-x).
∴AB=DC=(30-x).
y=AB·AD=x·(30-x)
=-x2+40x
=-(x2-30x+225-225)
=-(x-15)2+300.
当x=15时,y最大=300.
即当AD的长为15m时,长方形的面积最大,最大面积是300m2.
3.问题三:对问题一再变式
如图,在一个直角三角形的内部作一个矩形ABCD,其中点A和点D分别在两直角边上,BC在斜边上.
(1).设矩形的一边BC=xm,那么AB边的长度如何表示?
(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?
4.问题四:
某建筑物的窗户如下图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
分析:x为半圆的半径,也是矩形的较长边,因此x与半圆面积和矩形面积都有关系.要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大,即2xy+x2最大,而由于4y+4x+3x+πx=7x+4y+πx=15,所以y=.面积S=πx2+2xy=πx2+2x·=πx2+=-3.5x2+7.5x,这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可.
解:∵7x+4y+πx=15,
∴y=.
设窗户的面积是S(m2),则
S=πx2+2xy
=πx2+2x·
=πx2+
=-3.5x2+7.5x
=-3.5(x2-x)
=-3.5(x-)2+.
∴当x=≈1.07时,
S最大=≈4.02.
即当x≈1.07m时,S最大≈4.02m2,此时,窗户通过的光线最多.
第二环节 归纳升华
解决此类问题的基本思路是:
(1)理解问题;
(2)分析问题中的变量和常量以及它们之间的关系;
(3)用数学的方式表示它们之间的关系;
(4)做函数求解;
(5)检验结果的合理性,拓展等.
第三环节 课堂练习,活动探究
活动内容:
用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?
M
A
B
C
D
P
Q
R
正方形ABCD边长5cm,等腰三角形PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一直线l上,当C、Q两点重合时,等腰△PQR以1cm/s的速度沿直线l向左方向开始匀速运动,ts后正方形与等腰三角形重合部分面积为Scm2,解答下列问题:
(1)当t=3s时,求S的值;
(2)当t=3s时,求S的值;
(3)当5s≤t≤8s时,求S与t的函数关系式,并求S的最大值。
第四环节 课时小结
本节课我们进一步学习了用二次函数知识解决最大面积的问题,增强了应用数学知识的意识,获得了利用数学方法解决实际问题的经验,并进一步感受了数学建模思想和数学知识的应用价值.
第五环节 课后作业
习题2.8
表示
优点
缺点
表达式
变量间关系简捷明了,便于分析计算.
需要通过计算,才能得到所需结果
表格
能直接得到某些具体的对应值
不能反映函数整体的变化情况
图象
直观表示了变量间变化过程和变化趋势.
函数值只能是近似值
关系
表达式是基础,是重点,表格是画图象的关键,图象是在表达式和表格的基础上对函数的总体概括和形象化的表达.
北师大版九年级下册3 确定二次函数的表达式教案: 这是一份北师大版九年级下册3 确定二次函数的表达式教案,共4页。教案主要包含了教学反思等内容,欢迎下载使用。
北师大版九年级下册3 确定二次函数的表达式教案设计: 这是一份北师大版九年级下册3 确定二次函数的表达式教案设计,共3页。教案主要包含了教学目标,教学重难点,教学过程,教学反思等内容,欢迎下载使用。
初中数学北师大版九年级下册3 确定二次函数的表达式公开课教学设计: 这是一份初中数学北师大版九年级下册3 确定二次函数的表达式公开课教学设计,共18页。教案主要包含了教师准备,学生准备,师生活动,学生活动,教师点评,能力提升,基础巩固,拓展探究等内容,欢迎下载使用。