![第1课时 勾股定理(1)第1页](http://img-preview.51jiaoxi.com/2/3/5866503/10/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 勾股定理(1)第2页](http://img-preview.51jiaoxi.com/2/3/5866503/10/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 勾股定理(1)第3页](http://img-preview.51jiaoxi.com/2/3/5866503/10/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 勾股定理(1)第4页](http://img-preview.51jiaoxi.com/2/3/5866503/10/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 勾股定理(1)第5页](http://img-preview.51jiaoxi.com/2/3/5866503/10/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 勾股定理(1)第6页](http://img-preview.51jiaoxi.com/2/3/5866503/10/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 勾股定理(1)第7页](http://img-preview.51jiaoxi.com/2/3/5866503/10/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 勾股定理(1)第8页](http://img-preview.51jiaoxi.com/2/3/5866503/10/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 勾股定理(2)第1页](http://img-preview.51jiaoxi.com/2/3/5866503/7/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 勾股定理(2)第2页](http://img-preview.51jiaoxi.com/2/3/5866503/7/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 勾股定理(2)第3页](http://img-preview.51jiaoxi.com/2/3/5866503/7/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 勾股定理(2)第4页](http://img-preview.51jiaoxi.com/2/3/5866503/7/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 勾股定理(2)第5页](http://img-preview.51jiaoxi.com/2/3/5866503/7/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 勾股定理(2)第6页](http://img-preview.51jiaoxi.com/2/3/5866503/7/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 勾股定理(2)第7页](http://img-preview.51jiaoxi.com/2/3/5866503/7/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 勾股定理(2)第8页](http://img-preview.51jiaoxi.com/2/3/5866503/7/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 勾股定理(3)第1页](http://img-preview.51jiaoxi.com/2/3/5866503/5/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 勾股定理(3)第2页](http://img-preview.51jiaoxi.com/2/3/5866503/5/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 勾股定理(3)第3页](http://img-preview.51jiaoxi.com/2/3/5866503/5/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 勾股定理(3)第4页](http://img-preview.51jiaoxi.com/2/3/5866503/5/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 勾股定理(3)第5页](http://img-preview.51jiaoxi.com/2/3/5866503/5/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 勾股定理(3)第6页](http://img-preview.51jiaoxi.com/2/3/5866503/5/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 勾股定理(3)第7页](http://img-preview.51jiaoxi.com/2/3/5866503/5/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 勾股定理(3)第8页](http://img-preview.51jiaoxi.com/2/3/5866503/5/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第4课时 勾股定理的逆定理(1)第1页](http://img-preview.51jiaoxi.com/2/3/5866503/2/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第4课时 勾股定理的逆定理(1)第2页](http://img-preview.51jiaoxi.com/2/3/5866503/2/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第4课时 勾股定理的逆定理(1)第3页](http://img-preview.51jiaoxi.com/2/3/5866503/2/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第4课时 勾股定理的逆定理(1)第4页](http://img-preview.51jiaoxi.com/2/3/5866503/2/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第4课时 勾股定理的逆定理(1)第5页](http://img-preview.51jiaoxi.com/2/3/5866503/2/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第4课时 勾股定理的逆定理(1)第6页](http://img-preview.51jiaoxi.com/2/3/5866503/2/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第4课时 勾股定理的逆定理(1)第7页](http://img-preview.51jiaoxi.com/2/3/5866503/2/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第4课时 勾股定理的逆定理(1)第8页](http://img-preview.51jiaoxi.com/2/3/5866503/2/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第5课时 勾股定理的逆定理(2)第1页](http://img-preview.51jiaoxi.com/2/3/5866503/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第5课时 勾股定理的逆定理(2)第2页](http://img-preview.51jiaoxi.com/2/3/5866503/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第5课时 勾股定理的逆定理(2)第3页](http://img-preview.51jiaoxi.com/2/3/5866503/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第5课时 勾股定理的逆定理(2)第4页](http://img-preview.51jiaoxi.com/2/3/5866503/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第5课时 勾股定理的逆定理(2)第5页](http://img-preview.51jiaoxi.com/2/3/5866503/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第5课时 勾股定理的逆定理(2)第6页](http://img-preview.51jiaoxi.com/2/3/5866503/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第5课时 勾股定理的逆定理(2)第7页](http://img-preview.51jiaoxi.com/2/3/5866503/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第5课时 勾股定理的逆定理(2)第8页](http://img-preview.51jiaoxi.com/2/3/5866503/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第6课时 《勾股定理》单元复习第1页](http://img-preview.51jiaoxi.com/2/3/5866503/8/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第6课时 《勾股定理》单元复习第2页](http://img-preview.51jiaoxi.com/2/3/5866503/8/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第6课时 《勾股定理》单元复习第3页](http://img-preview.51jiaoxi.com/2/3/5866503/8/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第6课时 《勾股定理》单元复习第4页](http://img-preview.51jiaoxi.com/2/3/5866503/8/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第6课时 《勾股定理》单元复习第5页](http://img-preview.51jiaoxi.com/2/3/5866503/8/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第6课时 《勾股定理》单元复习第6页](http://img-preview.51jiaoxi.com/2/3/5866503/8/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第6课时 《勾股定理》单元复习第7页](http://img-preview.51jiaoxi.com/2/3/5866503/8/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第6课时 《勾股定理》单元复习第8页](http://img-preview.51jiaoxi.com/2/3/5866503/8/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![母题探源——《勾股定理》教材母题精选第1页](http://img-preview.51jiaoxi.com/2/3/5866503/6/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![母题探源——《勾股定理》教材母题精选第2页](http://img-preview.51jiaoxi.com/2/3/5866503/6/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![母题探源——《勾股定理》教材母题精选第3页](http://img-preview.51jiaoxi.com/2/3/5866503/6/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![母题探源——《勾股定理》教材母题精选第4页](http://img-preview.51jiaoxi.com/2/3/5866503/6/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![母题探源——《勾股定理》教材母题精选第5页](http://img-preview.51jiaoxi.com/2/3/5866503/6/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![母题探源——《勾股定理》教材母题精选第6页](http://img-preview.51jiaoxi.com/2/3/5866503/6/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![母题探源——《勾股定理》教材母题精选第7页](http://img-preview.51jiaoxi.com/2/3/5866503/6/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![母题探源——《勾股定理》教材母题精选第8页](http://img-preview.51jiaoxi.com/2/3/5866503/6/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理》自测第1页](http://img-preview.51jiaoxi.com/2/3/5866503/9/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理》自测第2页](http://img-preview.51jiaoxi.com/2/3/5866503/9/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理》自测第3页](http://img-preview.51jiaoxi.com/2/3/5866503/9/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理》自测第4页](http://img-preview.51jiaoxi.com/2/3/5866503/9/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理》自测第5页](http://img-preview.51jiaoxi.com/2/3/5866503/9/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理》自测第6页](http://img-preview.51jiaoxi.com/2/3/5866503/9/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理的逆定理》自测第1页](http://img-preview.51jiaoxi.com/2/3/5866503/4/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理的逆定理》自测第2页](http://img-preview.51jiaoxi.com/2/3/5866503/4/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理的逆定理》自测第3页](http://img-preview.51jiaoxi.com/2/3/5866503/4/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理的逆定理》自测第4页](http://img-preview.51jiaoxi.com/2/3/5866503/4/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理的逆定理》自测第5页](http://img-preview.51jiaoxi.com/2/3/5866503/4/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《勾股定理的逆定理》自测第6页](http://img-preview.51jiaoxi.com/2/3/5866503/4/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![中考新题型(创新性题) 勾股定理与代数说理第1页](http://img-preview.51jiaoxi.com/2/3/5866503/1/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![中考新题型(创新性题) 勾股定理与代数说理第2页](http://img-preview.51jiaoxi.com/2/3/5866503/1/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![中考新题型(创新性题) 勾股定理与代数说理第3页](http://img-preview.51jiaoxi.com/2/3/5866503/1/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![中考新题型(创新性题) 勾股定理与代数说理第4页](http://img-preview.51jiaoxi.com/2/3/5866503/1/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![中考新题型(创新性题) 勾股定理与代数说理第5页](http://img-preview.51jiaoxi.com/2/3/5866503/1/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![中考新题型(创新性题) 勾股定理与代数说理第6页](http://img-preview.51jiaoxi.com/2/3/5866503/1/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![中考新题型(创新性题) 勾股定理与网格图第1页](http://img-preview.51jiaoxi.com/2/3/5866503/3/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![中考新题型(创新性题) 勾股定理与网格图第2页](http://img-preview.51jiaoxi.com/2/3/5866503/3/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![中考新题型(创新性题) 勾股定理与网格图第3页](http://img-preview.51jiaoxi.com/2/3/5866503/3/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![中考新题型(创新性题) 勾股定理与网格图第4页](http://img-preview.51jiaoxi.com/2/3/5866503/3/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![中考新题型(创新性题) 勾股定理与网格图第5页](http://img-preview.51jiaoxi.com/2/3/5866503/3/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
所属成套资源:人教版数学八年级下册全册教学PPT课件+课时作业+期末知识复习
初中数学人教版八年级下册17.1 勾股定理备课课件ppt
展开
这是一份初中数学人教版八年级下册17.1 勾股定理备课课件ppt,文件包含《勾股定理》自测pptx、《勾股定理的逆定理》自测pptx、中考新题型创新性题勾股定理与代数说理pptx、中考新题型创新性题勾股定理与网格图pptx、母题探源《勾股定理》教材母题精选pptx、第1课时勾股定理1pptx、第2课时勾股定理2pptx、第3课时勾股定理3pptx、第4课时勾股定理的逆定理1pptx、第5课时勾股定理的逆定理2pptx、第6课时《勾股定理》单元复习pptx等11份课件配套教学资源,其中PPT共210页, 欢迎下载使用。
1.(课标)能运用勾股定理及其逆定理解决一些简单的实际问题.2.进一步加深性质定理与判定定理之间关系的认识.
知识点一:航海问题 某港口位于东西方向的海岸线上,远航号和海天号轮船同时离开港口,各自沿一固定方向航行,远航号每小时航行16海里,海天号每小时航行12海里,他们离开港口一个半小时后相距30海里.如果知道远航号沿东北方向航行,能知道海天号沿哪个方向航行吗?
解:根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30海里.∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远航号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北方向航行.
1.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
2.已知△ABC的三边长分别是a,b,c,且a=n2-1,b=2n,c=n2+1(n>1),试判断三角形的形状.解:△ABC是直角三角形,理由如下:∵在△ABC中,三条边长分别是a,b,c,且a=n2-1,b=2n,c=n2+1(n>1),∴a2+b2=(n2-1)2+(2n)2=n4-2n2+1+4n2=(n2+1)2,c2=(n2+1)2,∴a2+b2=c2,∴∠C=90°,△ABC是直角三角形.
(1)AB= ,BC= ,CD= ,AD= ; (2)连接AC,△ACD的形状是 ,△ABC的形状是 .
知识点三:在网格中确定三角形的形状如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上.
3.如图,6×6网格中每个小正方形的边长都为1,△ABC的顶点均为网格上的格点.(1)AB= ,BC= ,AC= ; (2)∠ABC= °;
(3)在格点上存在点P,使∠APC=90°,请在图中标出所有满足条件的格点P(用P1,P2,…表示)
4.【例1】如图,在△ABC中,AB的垂直平分线l交AB于E,交AC于D.AD=5,DC=3,BC=4.(1)求证:△ABC是直角三角形;(2)求AB的长.
8.如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE=1,DE=2,AE=4.(1)求证:∠ADC是直角;(2)AB的长为 .
(1)证明:∵DE是△ADC的高,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=42+22=20,同理:CD2=5,∴AD2+CD2=25,∵AC=AE+CE=4+1=5,∴AC2=25,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC是直角.
相关课件
这是一份人教版八年级下册第十七章 勾股定理17.1 勾股定理教学课件ppt,共13页。PPT课件主要包含了课标解读,学习目标,教材内容,勾股定理,知识结构,勾股定理的逆定理,互逆定理,课时安排,教学建议等内容,欢迎下载使用。
这是一份数学人教版17.1 勾股定理备课ppt课件,共14页。PPT课件主要包含了结论变形,勾股定理,符号语言表示,勾股定理应用的条件,勾股定理的逆定理,公园半径为400m,∴AD480,解在△ABC中,∵480400等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册17.1 勾股定理优秀课件ppt,共29页。PPT课件主要包含了学习目标,新课导入,新课讲解,课堂小结,当堂小练,拓展与延伸,布置作业,一直角边2,另一直角边2,斜边2等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)